spacer
spacer

PDBsum entry 2c9t

Go to PDB code: 
protein Protein-protein interface(s) links
Receptor/toxin PDB id
2c9t

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 4 more) 205 a.a. *
(+ 2 more) 13 a.a. *
Waters ×1514
* Residue conservation analysis
PDB id:
2c9t
Name: Receptor/toxin
Title: Crystal structure of acetylcholine binding protein (achbp) from aplysia californica in complex with alpha-conotoxin imi
Structure: Soluble acetylcholine receptor. Chain: a, b, c, d, e, f, g, h, i, j. Synonym: acetylcholine binding protein. Other_details: alpha-conotoxin imi bound in receptor sites. Alpha-conotoxin imi. Chain: k, m, o, p, q, r, s, t. Fragment: residues 5-16. Synonym: alpha-ctx imi. Other_details: alpha-conotoxin imi bound in receptor sites
Source: Aplysia californica. California sea hare. Organism_taxid: 6500. Conus imperialis. Imperial cone. Organism_taxid: 35631
Biol. unit: 80mer (from PDB file)
Resolution:
2.25Å     R-factor:   0.171     R-free:   0.227
Authors: C.Ulens,R.C.Hogg,P.H.Celie,D.Bertrand,V.Tsetlin,A.B.Smit,T.K.Sixma
Key ref:
C.Ulens et al. (2006). Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc Natl Acad Sci U S A, 103, 3615-3620. PubMed id: 16505382 DOI: 10.1073/pnas.0507889103
Date:
14-Dec-05     Release date:   13-Feb-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q8WSF8  (Q8WSF8_APLCA) -  Soluble acetylcholine receptor from Aplysia californica
Seq:
Struc:
236 a.a.
205 a.a.*
Protein chains
Pfam   ArchSchema ?
P50983  (CA1_CONIM) -  Alpha-conotoxin ImI (Fragment) from Conus imperialis
Seq:
Struc:
17 a.a.
13 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1073/pnas.0507889103 Proc Natl Acad Sci U S A 103:3615-3620 (2006)
PubMed id: 16505382  
 
 
Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP.
C.Ulens, R.C.Hogg, P.H.Celie, D.Bertrand, V.Tsetlin, A.B.Smit, T.K.Sixma.
 
  ABSTRACT  
 
The nicotinic acetylcholine receptor (nAChR) is the prototype member of the superfamily of pentameric ligand-gated ion channels. How the extracellular ligand-binding domain coordinates selective binding of ligand molecules to different subtypes of the receptor is unknown at the structural level. Here, we present the 2.2-A crystal structure of a homolog of the ligand-binding domain of the nAChR, Aplysia californica AChBP (Ac-AChBP), in complex with alpha-conotoxin ImI. This conotoxin is unique in its selectivity toward the neuronal alpha3beta2 and alpha7 nAChR, a feature that is reflected in its selective binding to Ac-AChBP compared with other AChBP homologs. We observe a network of interactions between the residues of the ligand-binding site and the toxin, in which ImI Arg-7 and Trp-10 play a key role. The toxin also forms interactions in the ligand-binding site that were not seen in the complex of Ac-AChBP with PnIA(A10L D14K), a conotoxin variant that lacks binding selectivity to AChBP homologs. In combination with electrophysiological recordings obtained by using the wild-type alpha7 nAChR and L247T mutant, we show that conotoxin ImI inhibits ion conduction by stabilizing the receptor in a desensitized conformation. Comparison of the Ac-AChBP-ImI crystal structure with existing AChBP structures offers structural insight into the extent of flexibility of the interface loops and how their movement may couple ligand binding to channel gating in the context of a nAChR.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Crystal structure of -conotoxin ImI bound to Ac-AChBP viewed along the fivefold axis. Conotoxins are in red.
Figure 4.
Fig. 4. Molecular contacts at the toxin–receptor interface. (A and B) Details of molecular contacts between Ac-AChBP and -conotoxin PnIA(A10L D14K) (A) and -conotoxin ImI (B). The conotoxin is shown in red, the principal binding side in yellow, and the complementary binding side in blue. Disulfide bridges are green. Dashed lines indicate H-bonds or salt bridges. (C) Sequence alignment of Ac-AChBP, Ls-AChBP, and [7], [9], [3], [4] nAChRs. Sequence numbering at the top is for Ac-AChBP and at the bottom is for [7] nAChR. Residues of the principal binding side that interact with -conotoxin ImI are shown in yellow; residues of the complementary binding side are in blue. Contacts that are present in the complex with ImI, but not in the complex with PnIA(A10L D14K), are labeled with below the alignment.
 
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21468359 M.Brams, A.Pandya, D.Kuzmin, R.van Elk, L.Krijnen, J.L.Yakel, V.Tsetlin, A.B.Smit, and C.Ulens (2011).
A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors.
  PLoS Biol, 9, e1001034.
PDB codes: 2xys 2xyt
21058296 N.Dimitropoulos, A.Papakyriakou, G.A.Dalkas, C.T.Chasapis, K.Poulas, and G.A.Spyroulias (2011).
A computational investigation on the role of glycosylation in the binding of alpha1 nicotinic acetylcholine receptor with two alpha-neurotoxins.
  Proteins, 79, 142-152.  
21390272 R.Yu, D.J.Craik, and Q.Kaas (2011).
Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations.
  PLoS Comput Biol, 7, e1002011.  
19901032 C.J.Armishaw, N.Singh, J.L.Medina-Franco, R.J.Clark, K.C.Scott, R.A.Houghten, and A.A.Jensen (2010).
A synthetic combinatorial strategy for developing alpha-conotoxin analogs as potent alpha7 nicotinic acetylcholine receptor antagonists.
  J Biol Chem, 285, 1809-1821.  
20145249 S.Luo, K.B.Akondi, D.Zhangsun, Y.Wu, X.Zhu, Y.Hu, S.Christensen, C.Dowell, N.L.Daly, D.J.Craik, C.I.Wang, R.J.Lewis, P.F.Alewood, and J.Michael McIntosh (2010).
Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor.
  J Biol Chem, 285, 12355-12366.  
19186108 A.Babakhani, T.T.Talley, P.Taylor, and J.A.McCammon (2009).
A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach.
  Comput Biol Chem, 33, 160-170.  
19721446 A.Taly, P.J.Corringer, D.Guedin, P.Lestage, and J.P.Changeux (2009).
Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system.
  Nat Rev Drug Discov, 8, 733-750.  
19131337 C.Armishaw, A.A.Jensen, T.Balle, R.J.Clark, K.Harpsøe, C.Skonberg, T.Liljefors, and K.Strømgaard (2009).
Rational design of alpha-conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: improved antagonistic activity by incorporation of proline derivatives.
  J Biol Chem, 284, 9498-9512.  
19483108 D.Berezhnoy, T.T.Gibbs, and D.H.Farb (2009).
Docking of 1,4-benzodiazepines in the alpha1/gamma2 GABA(A) receptor modulator site.
  Mol Pharmacol, 76, 440-450.  
  19126755 E.X.Albuquerque, E.F.Pereira, M.Alkondon, and S.W.Rogers (2009).
Mammalian nicotinic acetylcholine receptors: from structure to function.
  Physiol Rev, 89, 73.  
19712060 I.E.Kasheverov, M.N.Zhmak, A.Fish, P.Rucktooa, A.Y.Khruschov, A.V.Osipov, R.H.Ziganshin, D.D'hoedt, D.Bertrand, T.K.Sixma, A.B.Smit, and V.I.Tsetlin (2009).
Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor.
  J Neurochem, 111, 934-944.  
19457066 I.M.Paulsen, I.L.Martin, and S.M.Dunn (2009).
Isomerization of the proline in the M2-M3 linker is not required for activation of the human 5-HT3A receptor.
  J Neurochem, 110, 870-878.  
19427904 J.A.Paulo, and E.Hawrot (2009).
Effect of homologous serotonin receptor loop substitutions on the heterologous expression in Pichia of a chimeric acetylcholine-binding protein with alpha-bungarotoxin-binding activity.
  Protein Expr Purif, 67, 76-81.  
19448650 L.Azam, and J.M.McIntosh (2009).
Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors.
  Acta Pharmacol Sin, 30, 771-783.  
19319967 M.Zouridakis, P.Zisimopoulou, K.Poulas, and S.J.Tzartos (2009).
Recent advances in understanding the structure of nicotinic acetylcholine receptors.
  IUBMB Life, 61, 407-423.  
19165896 N.L.Daly, and D.J.Craik (2009).
Structural studies of conotoxins.
  IUBMB Life, 61, 144-150.  
18047559 A.Mourot, E.Bamberg, and J.Rettinger (2008).
Agonist- and competitive antagonist-induced movement of loop 5 on the alpha subunit of the neuronal alpha4beta4 nicotinic acetylcholine receptor.
  J Neurochem, 105, 413-424.  
18508600 G.B.Wells (2008).
Structural answers and persistent questions about how nicotinic receptors work.
  Front Biosci, 13, 5479-5510.  
18262468 J.P.Changeux, and A.Taly (2008).
Nicotinic receptors, allosteric proteins and medicine.
  Trends Mol Med, 14, 93.  
18299323 L.Azam, D.Yoshikami, and J.M.McIntosh (2008).
Amino acid residues that confer high selectivity of the alpha6 nicotinic acetylcholine receptor subunit to alpha-conotoxin MII[S4A,E11A,L15A].
  J Biol Chem, 283, 11625-11632.  
18295795 M.Ellison, Z.P.Feng, A.J.Park, X.Zhang, B.M.Olivera, J.M.McIntosh, and R.S.Norton (2008).
Alpha-RgIA, a novel conotoxin that blocks the alpha9alpha10 nAChR: structure and identification of key receptor-binding residues.
  J Mol Biol, 377, 1216-1227.
PDB codes: 2juq 2jur 2jus 2jut
18338186 M.Ihara, T.Okajima, A.Yamashita, T.Oda, K.Hirata, H.Nishiwaki, T.Morimoto, M.Akamatsu, Y.Ashikawa, S.Kuroda, R.Mega, S.Kuramitsu, D.B.Sattelle, and K.Matsuda (2008).
Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin.
  Invert Neurosci, 8, 71-81.
PDB codes: 2zju 2zjv
18230720 M.Tomizawa, D.Maltby, T.T.Talley, K.A.Durkin, K.F.Medzihradszky, A.L.Burlingame, P.Taylor, and J.E.Casida (2008).
Atypical nicotinic agonist bound conformations conferring subtype selectivity.
  Proc Natl Acad Sci U S A, 105, 1728-1732.  
18541920 M.Yi, H.Tjong, and H.X.Zhou (2008).
Spontaneous conformational change and toxin binding in alpha7 acetylcholine receptor: insight into channel activation and inhibition.
  Proc Natl Acad Sci U S A, 105, 8280-8285.  
17445276 A.H.Jin, H.Brandstaetter, S.T.Nevin, C.C.Tan, R.J.Clark, D.J.Adams, P.F.Alewood, D.J.Craik, and N.L.Daly (2007).
Structure of alpha-conotoxin BuIA: influences of disulfide connectivity on structural dynamics.
  BMC Struct Biol, 7, 28.
PDB code: 2ns3
17651090 D.Kalamida, K.Poulas, V.Avramopoulou, E.Fostieri, G.Lagoumintzis, K.Lazaridis, A.Sideri, M.Zouridakis, and S.J.Tzartos (2007).
Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity.
  FEBS J, 274, 3799-3845.  
17521566 D.L.Minor (2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
  Neuron, 54, 511-533.  
17609418 E.A.Gay, R.J.Bienstock, P.W.Lamb, and J.L.Yakel (2007).
Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor.
  Mol Pharmacol, 72, 838-849.  
17009926 J.A.Dani, and D.Bertrand (2007).
Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.
  Annu Rev Pharmacol Toxicol, 47, 699-729.  
17097703 K.J.Swartz (2007).
Tarantula toxins interacting with voltage sensors in potassium channels.
  Toxicon, 49, 213-230.  
17558449 L.Liu, G.Chew, E.Hawrot, C.Chi, and C.Wang (2007).
Two potent alpha3/5 conotoxins from piscivorous Conus achatinus.
  Acta Biochim Biophys Sin (Shanghai), 39, 438-444.  
17660751 S.Dutertre, C.Ulens, R.Büttner, A.Fish, R.van Elk, Y.Kendel, G.Hopping, P.F.Alewood, C.Schroeder, A.Nicke, A.B.Smit, T.K.Sixma, and R.J.Lewis (2007).
AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity.
  EMBO J, 26, 3858-3867.
PDB code: 2uz6
16956365 I.E.Kasheverov, M.N.Zhmak, C.A.Vulfius, E.V.Gorbacheva, D.Y.Mordvintsev, Y.N.Utkin, R.van Elk, A.B.Smit, and V.I.Tsetlin (2006).
Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors.
  FEBS J, 273, 4470-4481.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer