 |
PDBsum entry 2bfq
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Adp ribose-binding protein
|
PDB id
|
|
|
|
2bfq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
24:1911-1920
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
The macro domain is an ADP-ribose binding module.
|
|
G.I.Karras,
G.Kustatscher,
H.R.Buhecha,
M.D.Allen,
C.Pugieux,
F.Sait,
M.Bycroft,
A.G.Ladurner.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The ADP-ribosylation of proteins is an important post-translational modification
that occurs in a variety of biological processes, including DNA repair,
transcription, chromatin biology and long-term memory formation. Yet no protein
modules are known that specifically recognize the ADP-ribose nucleotide. We
provide biochemical and structural evidence that macro domains are high-affinity
ADP-ribose binding modules. Our structural analysis reveals a conserved ligand
binding pocket among the macro domain fold. Consistently, distinct human macro
domains retain their ability to bind ADP-ribose. In addition, some macro domain
proteins also recognize poly-ADP-ribose as a ligand. Our data suggest an
important role for proteins containing macro domains in the biology of
ADP-ribose.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4 Structure of the complex formed between Af1521 and
ADP-ribose. (A) The ADP-ribose molecule binds the Af1521 macro
domain in an L-shaped cleft. The ADP-ribose ligand is shown as a
ball-and-stick model. (B) Structure of the complex between
Af1521 and ADP. The structure is highly similar to that of the
complex between Af1521 and ADP-ribose, but a number of
interactions that contribute to ADP-ribose specificity and
affinity cannot occur. The ADP ligand is shown as a
ball-and-stick model.
|
 |
Figure 5.
Figure 5 Specificity of the macro domain fold for ADP-ribose.
(A) Electron density for the ADP-ribose ligand in the pocket of
the Af1521 protein. The ADP-ribose ligand is shown as a
ball-and-stick model. (B) Stereo-diagram of the ADP-ribose
binding pocket. A number of critical interactions between the
ligand and the Af1521 macro domain are shown. Several of the
interactions involve hydrogen bonds between side chains (Asn 34,
Asp 20) and backbone amide bonds. Specific aromatic stacking
interactions occur between Tyr 176 and the adenine base. The
phosphates are stabilized by a number of interactions, including
the backbone amide of Val 43, Ser 141 and the favorable dipole
of helix 1. (C) Schematic representation for the binding of
ADP-ribose to the macro domain. The LigPlot (Wallace et al,
1995) diagram summarizes key noncovalent interactions between
the ADP-ribose ligand and the Af1521 macro domain. Legend: thick
blue lines, ADP-ribose ligand; thin red lines, macro domain
residues; circles or semicircles with radiating lines; atoms or
residues involved in hydrophobic contacts between protein and
ligand.
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2005,
24,
1911-1920)
copyright 2005.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.A.Ali,
G.Timinszky,
R.Arribas-Bosacoma,
M.Kozlowski,
P.O.Hassa,
M.Hassler,
A.G.Ladurner,
L.H.Pearl,
and
A.W.Oliver
(2012).
The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks.
|
| |
Nat Struct Mol Biol,
19,
685-692.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.A.Gibson,
and
W.L.Kraus
(2012).
New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs.
|
| |
Nat Rev Mol Cell Biol,
13,
411-424.
|
 |
|
|
|
|
 |
I.K.Kim,
J.R.Kiefer,
C.M.Ho,
R.A.Stegeman,
S.Classen,
J.A.Tainer,
and
T.Ellenberger
(2012).
Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element.
|
| |
Nat Struct Mol Biol,
19,
653-656.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Slade,
M.S.Dunstan,
E.Barkauskaite,
R.Weston,
P.Lafite,
N.Dixon,
M.Ahel,
D.Leys,
and
I.Ahel
(2011).
The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase.
|
| |
Nature,
477,
616-620.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Barzily-Rokni,
N.Friedman,
S.Ron-Bigger,
S.Isaac,
D.Michlin,
and
A.Eden
(2011).
Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A).
|
| |
Nucleic Acids Res,
39,
1326-1335.
|
 |
|
|
|
|
 |
P.Dehoux,
R.Flores,
C.Dauga,
G.Zhong,
and
A.Subtil
(2011).
Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins.
|
| |
BMC Genomics,
12,
109.
|
 |
|
|
|
|
 |
R.I.Tennen,
and
K.F.Chua
(2011).
Chromatin regulation and genome maintenance by mammalian SIRT6.
|
| |
Trends Biochem Sci,
36,
39-46.
|
 |
|
|
|
|
 |
Y.Zhang,
S.Liu,
C.Mickanin,
Y.Feng,
O.Charlat,
G.A.Michaud,
M.Schirle,
X.Shi,
M.Hild,
A.Bauer,
V.E.Myer,
P.M.Finan,
J.A.Porter,
S.M.Huang,
and
F.Cong
(2011).
RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling.
|
| |
Nat Cell Biol,
13,
623-629.
|
 |
|
|
|
|
 |
Z.Wu,
Y.Li,
X.Li,
D.Ti,
Y.Zhao,
Y.Si,
Q.Mei,
P.Zhao,
X.Fu,
and
W.Han
(2011).
LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation.
|
| |
PLoS One,
6,
e18157.
|
 |
|
|
|
|
 |
A.Bateman,
P.Coggill,
and
R.D.Finn
(2010).
DUFs: families in search of function.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
1148-1152.
|
 |
|
|
|
|
 |
C.C.Chang,
S.Gao,
L.Y.Sung,
G.N.Corry,
Y.Ma,
Z.P.Nagy,
X.C.Tian,
and
T.P.Rasmussen
(2010).
Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer.
|
| |
Cell Reprogram,
12,
43-53.
|
 |
|
|
|
|
 |
D.L.Guzmán,
A.Randall,
P.Baldi,
and
Z.Guan
(2010).
Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability.
|
| |
Proc Natl Acad Sci U S A,
107,
1989-1994.
|
 |
|
|
|
|
 |
F.Mégnin-Chanet,
M.A.Bollet,
and
J.Hall
(2010).
Targeting poly(ADP-ribose) polymerase activity for cancer therapy.
|
| |
Cell Mol Life Sci,
67,
3649-3662.
|
 |
|
|
|
|
 |
G.O.Kothe,
M.Kitamura,
M.Masutani,
E.U.Selker,
and
H.Inoue
(2010).
PARP is involved in replicative aging in Neurospora crassa.
|
| |
Fungal Genet Biol,
47,
297-309.
|
 |
|
|
|
|
 |
G.Y.Li,
R.D.McCulloch,
A.L.Fenton,
M.Cheung,
L.Meng,
M.Ikura,
and
C.A.Koch
(2010).
Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response.
|
| |
Proc Natl Acad Sci U S A,
107,
9129-9134.
|
 |
|
|
|
|
 |
L.Chen,
T.H.Chan,
and
X.Y.Guan
(2010).
Chromosome 1q21 amplification and oncogenes in hepatocellular carcinoma.
|
| |
Acta Pharmacol Sin,
31,
1165-1171.
|
 |
|
|
|
|
 |
M.Citarelli,
S.Teotia,
and
R.S.Lamb
(2010).
Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes.
|
| |
BMC Evol Biol,
10,
308.
|
 |
|
|
|
|
 |
R.I.Tennen,
E.Berber,
and
K.F.Chua
(2010).
Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization.
|
| |
Mech Ageing Dev,
131,
185-192.
|
 |
|
|
|
|
 |
R.Krishnakumar,
and
W.L.Kraus
(2010).
The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets.
|
| |
Mol Cell,
39,
8.
|
 |
|
|
|
|
 |
S.E.Polo,
A.Kaidi,
L.Baskcomb,
Y.Galanty,
and
S.P.Jackson
(2010).
Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4.
|
| |
EMBO J,
29,
3130-3139.
|
 |
|
|
|
|
 |
S.Eustermann,
C.Brockmann,
P.V.Mehrotra,
J.C.Yang,
D.Loakes,
S.C.West,
I.Ahel,
and
D.Neuhaus
(2010).
Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose).
|
| |
Nat Struct Mol Biol,
17,
241-243.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Isogai,
S.Kanno,
M.Ariyoshi,
H.Tochio,
Y.Ito,
A.Yasui,
and
M.Shirakawa
(2010).
Solution structure of a zinc-finger domain that binds to poly-ADP-ribose.
|
| |
Genes Cells,
15,
101-110.
|
 |
|
|
|
|
 |
A.A.Thambirajah,
A.Li,
T.Ishibashi,
and
J.Ausió
(2009).
New developments in post-translational modifications and functions of histone H2A variants.
|
| |
Biochem Cell Biol,
87,
7.
|
 |
|
|
|
|
 |
A.J.Gottschalk,
G.Timinszky,
S.E.Kong,
J.Jin,
Y.Cai,
S.K.Swanson,
M.P.Washburn,
L.Florens,
A.G.Ladurner,
J.W.Conaway,
and
R.C.Conaway
(2009).
Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.
|
| |
Proc Natl Acad Sci U S A,
106,
13770-13774.
|
 |
|
|
|
|
 |
D.Ahel,
Z.Horejsí,
N.Wiechens,
S.E.Polo,
E.Garcia-Wilson,
I.Ahel,
H.Flynn,
M.Skehel,
S.C.West,
S.P.Jackson,
T.Owen-Hughes,
and
S.J.Boulton
(2009).
Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1.
|
| |
Science,
325,
1240-1243.
|
 |
|
|
|
|
 |
E.A.Osborne,
S.Dudoit,
and
J.Rine
(2009).
The establishment of gene silencing at single-cell resolution.
|
| |
Nat Genet,
41,
800-806.
|
 |
|
|
|
|
 |
E.Park,
and
D.E.Griffin
(2009).
Interaction of Sindbis virus non-structural protein 3 with poly(ADP-ribose) polymerase 1 in neuronal cells.
|
| |
J Gen Virol,
90,
2073-2080.
|
 |
|
|
|
|
 |
E.Park,
and
D.E.Griffin
(2009).
The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice.
|
| |
Virology,
388,
305-314.
|
 |
|
|
|
|
 |
G.Timinszky,
S.Till,
P.O.Hassa,
M.Hothorn,
G.Kustatscher,
B.Nijmeijer,
J.Colombelli,
M.Altmeyer,
E.H.Stelzer,
K.Scheffzek,
M.O.Hottiger,
and
A.G.Ladurner
(2009).
A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation.
|
| |
Nat Struct Mol Biol,
16,
923-929.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Kleine,
and
B.Lüscher
(2009).
Learning how to read ADP-ribosylation.
|
| |
Cell,
139,
17-19.
|
 |
|
|
|
|
 |
H.Malet,
B.Coutard,
S.Jamal,
H.Dutartre,
N.Papageorgiou,
M.Neuvonen,
T.Ahola,
N.Forrester,
E.A.Gould,
D.Lafitte,
F.Ferron,
J.Lescar,
A.E.Gorbalenya,
X.de Lamballerie,
and
B.Canard
(2009).
The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket.
|
| |
J Virol,
83,
6534-6545.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Wojdyla,
I.Manolaridis,
E.J.Snijder,
A.E.Gorbalenya,
B.Coutard,
Y.Piotrowski,
R.Hilgenfeld,
and
P.A.Tucker
(2009).
Structure of the X (ADRP) domain of nsp3 from feline coronavirus.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
1292-1300.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.M.Frizzell,
M.J.Gamble,
J.G.Berrocal,
T.Zhang,
R.Krishnakumar,
Y.Cen,
A.A.Sauve,
and
W.L.Kraus
(2009).
Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.
|
| |
J Biol Chem,
284,
33926-33938.
|
 |
|
|
|
|
 |
M.Buschbeck,
I.Uribesalgo,
I.Wibowo,
P.Rué,
D.Martin,
A.Gutierrez,
L.Morey,
R.Guigó,
H.López-Schier,
and
L.Di Croce
(2009).
The histone variant macroH2A is an epigenetic regulator of key developmental genes.
|
| |
Nat Struct Mol Biol,
16,
1074-1079.
|
 |
|
|
|
|
 |
N.Dani,
A.Stilla,
A.Marchegiani,
A.Tamburro,
S.Till,
A.G.Ladurner,
D.Corda,
and
M.Di Girolamo
(2009).
Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome.
|
| |
Proc Natl Acad Sci U S A,
106,
4243-4248.
|
 |
|
|
|
|
 |
P.Caiafa,
and
J.Zlatanova
(2009).
CCCTC-binding factor meets poly(ADP-ribose) polymerase-1.
|
| |
J Cell Physiol,
219,
265-270.
|
 |
|
|
|
|
 |
P.Chang,
M.Coughlin,
and
T.J.Mitchison
(2009).
Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly.
|
| |
Mol Biol Cell,
20,
4575-4585.
|
 |
|
|
|
|
 |
S.H.Cho,
S.Goenka,
T.Henttinen,
P.Gudapati,
A.Reinikainen,
C.M.Eischen,
R.Lahesmaa,
and
M.Boothby
(2009).
PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells.
|
| |
Blood,
113,
2416-2425.
|
 |
|
|
|
|
 |
W.L.Kraus
(2009).
New functions for an ancient domain.
|
| |
Nat Struct Mol Biol,
16,
904-907.
|
 |
|
|
|
|
 |
Y.Piotrowski,
G.Hansen,
A.L.Boomaars-van der Zanden,
E.J.Snijder,
A.E.Gorbalenya,
and
R.Hilgenfeld
(2009).
Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property.
|
| |
Protein Sci,
18,
6.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Xu,
L.Cong,
C.Chen,
L.Wei,
Q.Zhao,
X.Xu,
Y.Ma,
M.Bartlam,
and
Z.Rao
(2009).
Crystal structures of two coronavirus ADP-ribose-1''-monophosphatases and their complexes with ADP-Ribose: a systematic structural analysis of the viral ADRP domain.
|
| |
J Virol,
83,
1083-1092.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Hakmé,
A.Huber,
P.Dollé,
and
V.Schreiber
(2008).
The macroPARP genes parp-9 and parp-14 are developmentally and differentially regulated in mouse tissues.
|
| |
Dev Dyn,
237,
209-215.
|
 |
|
|
|
|
 |
A.Hakmé,
H.K.Wong,
F.Dantzer,
and
V.Schreiber
(2008).
The expanding field of poly(ADP-ribosyl)ation reactions. 'Protein Modifications: Beyond the Usual Suspects' Review Series.
|
| |
EMBO Rep,
9,
1094-1100.
|
 |
|
|
|
|
 |
C.Bönisch,
S.M.Nieratschker,
N.K.Orfanos,
and
S.B.Hake
(2008).
Chromatin proteomics and epigenetic regulatory circuits.
|
| |
Expert Rev Proteomics,
5,
105-119.
|
 |
|
|
|
|
 |
I.Ahel,
D.Ahel,
T.Matsusaka,
A.J.Clark,
J.Pines,
S.J.Boulton,
and
S.C.West
(2008).
Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins.
|
| |
Nature,
451,
81-85.
|
 |
|
|
|
|
 |
J.P.Gagné,
M.Isabelle,
K.S.Lo,
S.Bourassa,
M.J.Hendzel,
V.L.Dawson,
T.M.Dawson,
and
G.G.Poirier
(2008).
Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.
|
| |
Nucleic Acids Res,
36,
6959-6976.
|
 |
|
|
|
|
 |
J.Yélamos,
V.Schreiber,
and
F.Dantzer
(2008).
Toward specific functions of poly(ADP-ribose) polymerase-2.
|
| |
Trends Mol Med,
14,
169-178.
|
 |
|
|
|
|
 |
K.K.Eriksson,
L.Cervantes-Barragán,
B.Ludewig,
and
V.Thiel
(2008).
Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1''-phosphatase, a viral function conserved in the alpha-like supergroup.
|
| |
J Virol,
82,
12325-12334.
|
 |
|
|
|
|
 |
L.Wei,
C.Chen,
Q.Zhao,
C.Li,
L.Cong,
X.Xu,
Y.Ma,
M.Liao,
Y.Xu,
and
Z.Rao
(2008).
Purification, crystallization and preliminary crystallographic analysis of avian infectious bronchitis virus nsp3 ADRP domain.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
802-804.
|
 |
|
|
|
|
 |
S.Till,
K.Diamantara,
and
A.G.Ladurner
(2008).
PARP: a transferase by any other name.
|
| |
Nat Struct Mol Biol,
15,
1243-1244.
|
 |
|
|
|
|
 |
U.Rass,
I.Ahel,
and
S.C.West
(2008).
Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin.
|
| |
J Biol Chem,
283,
33994-34001.
|
 |
|
|
|
|
 |
V.Anantharaman,
and
L.Aravind
(2008).
Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites.
|
| |
Cell Cycle,
7,
1467-1472.
|
 |
|
|
|
|
 |
D.A.Nusinow,
I.Hernández-Muñoz,
T.G.Fazzio,
G.M.Shah,
W.L.Kraus,
and
B.Panning
(2007).
Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome.
|
| |
J Biol Chem,
282,
12851-12859.
|
 |
|
|
|
|
 |
F.Berger,
C.Lau,
and
M.Ziegler
(2007).
Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1.
|
| |
Proc Natl Acad Sci U S A,
104,
3765-3770.
|
 |
|
|
|
|
 |
H.Lin
(2007).
Nicotinamide adenine dinucleotide: beyond a redox coenzyme.
|
| |
Org Biomol Chem,
5,
2541-2554.
|
 |
|
|
|
|
 |
J.F.Haince,
S.Kozlov,
V.L.Dawson,
T.M.Dawson,
M.J.Hendzel,
M.F.Lavin,
and
G.G.Poirier
(2007).
Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents.
|
| |
J Biol Chem,
282,
16441-16453.
|
 |
|
|
|
|
 |
L.N.Changolkar,
C.Costanzi,
N.A.Leu,
D.Chen,
K.J.McLaughlin,
and
J.R.Pehrson
(2007).
Developmental changes in histone macroH2A1-mediated gene regulation.
|
| |
Mol Cell Biol,
27,
2758-2764.
|
 |
|
|
|
|
 |
L.R.Comstock,
and
J.M.Denu
(2007).
Synthesis and biochemical evaluation of O-acetyl-ADP-ribose and N-acetyl analogs.
|
| |
Org Biomol Chem,
5,
3087-3091.
|
 |
|
|
|
|
 |
M.Miwa,
and
M.Masutani
(2007).
PolyADP-ribosylation and cancer.
|
| |
Cancer Sci,
98,
1528-1535.
|
 |
|
|
|
|
 |
N.M.Maas,
T.Van de Putte,
C.Melotte,
A.Francis,
C.T.Schrander-Stumpel,
D.Sanlaville,
D.Genevieve,
S.Lyonnet,
B.Dimitrov,
K.Devriendt,
J.P.Fryns,
and
J.R.Vermeesch
(2007).
The C20orf133 gene is disrupted in a patient with Kabuki syndrome.
|
| |
J Med Genet,
44,
562-569.
|
 |
|
|
|
|
 |
S.Goenka,
S.H.Cho,
and
M.Boothby
(2007).
Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription.
|
| |
J Biol Chem,
282,
18732-18739.
|
 |
|
|
|
|
 |
S.Imagama,
A.Abe,
M.Suzuki,
F.Hayakawa,
A.Katsumi,
N.Emi,
H.Kiyoi,
and
T.Naoe
(2007).
LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22).
|
| |
Eur J Haematol,
79,
25-31.
|
 |
|
|
|
|
 |
A.Flaus,
D.M.Martin,
G.J.Barton,
and
T.Owen-Hughes
(2006).
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs.
|
| |
Nucleic Acids Res,
34,
2887-2905.
|
 |
|
|
|
|
 |
A.G.Ladurner
(2006).
Rheostat control of gene expression by metabolites.
|
| |
Mol Cell,
24,
1.
|
 |
|
|
|
|
 |
A.Lulla,
V.Lulla,
K.Tints,
T.Ahola,
and
A.Merits
(2006).
Molecular determinants of substrate specificity for Semliki Forest virus nonstructural protease.
|
| |
J Virol,
80,
5413-5422.
|
 |
|
|
|
|
 |
C.M.Doyen,
F.Montel,
T.Gautier,
H.Menoni,
C.Claudet,
M.Delacour-Larose,
D.Angelov,
A.Hamiche,
J.Bednar,
C.Faivre-Moskalenko,
P.Bouvet,
and
S.Dimitrov
(2006).
Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome.
|
| |
EMBO J,
25,
4234-4244.
|
 |
|
|
|
|
 |
C.M.Doyen,
W.An,
D.Angelov,
V.Bondarenko,
F.Mietton,
V.M.Studitsky,
A.Hamiche,
R.G.Roeder,
P.Bouvet,
and
S.Dimitrov
(2006).
Mechanism of polymerase II transcription repression by the histone variant macroH2A.
|
| |
Mol Cell Biol,
26,
1156-1164.
|
 |
|
|
|
|
 |
H.Malet,
K.Dalle,
N.Brémond,
F.Tocque,
S.Blangy,
V.Campanacci,
B.Coutard,
S.Grisel,
J.Lichière,
V.Lantez,
C.Cambillau,
B.Canard,
and
M.P.Egloff
(2006).
Expression, purification and crystallization of the SARS-CoV macro domain.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
405-408.
|
 |
|
|
|
|
 |
K.Ouararhni,
R.Hadj-Slimane,
S.Ait-Si-Ali,
P.Robin,
F.Mietton,
A.Harel-Bellan,
S.Dimitrov,
and
A.Hamiche
(2006).
The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity.
|
| |
Genes Dev,
20,
3324-3336.
|
 |
|
|
|
|
 |
L.N.Changolkar,
and
J.R.Pehrson
(2006).
macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome.
|
| |
Mol Cell Biol,
26,
4410-4420.
|
 |
|
|
|
|
 |
M.Agelopoulos,
and
D.Thanos
(2006).
Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A.
|
| |
EMBO J,
25,
4843-4853.
|
 |
|
|
|
|
 |
M.P.Egloff,
H.Malet,
A.Putics,
M.Heinonen,
H.Dutartre,
A.Frangeul,
A.Gruez,
V.Campanacci,
C.Cambillau,
J.Ziebuhr,
T.Ahola,
and
B.Canard
(2006).
Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains.
|
| |
J Virol,
80,
8493-8502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.O.Hassa,
S.S.Haenni,
M.Elser,
and
M.O.Hottiger
(2006).
Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?
|
| |
Microbiol Mol Biol Rev,
70,
789-829.
|
 |
|
|
|
|
 |
S.Chakravarthy,
and
K.Luger
(2006).
The histone variant macro-H2A preferentially forms "hybrid nucleosomes".
|
| |
J Biol Chem,
281,
25522-25531.
|
 |
|
|
|
|
 |
S.Goenka,
and
M.Boothby
(2006).
Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor.
|
| |
Proc Natl Acad Sci U S A,
103,
4210-4215.
|
 |
|
|
|
|
 |
V.Schreiber,
F.Dantzer,
J.C.Ame,
and
G.de Murcia
(2006).
Poly(ADP-ribose): novel functions for an old molecule.
|
| |
Nat Rev Mol Cell Biol,
7,
517-528.
|
 |
|
|
|
|
 |
A.Putics,
W.Filipowicz,
J.Hall,
A.E.Gorbalenya,
and
J.Ziebuhr
(2005).
ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture.
|
| |
J Virol,
79,
12721-12731.
|
 |
|
|
|
|
 |
G.Kustatscher,
M.Hothorn,
C.Pugieux,
K.Scheffzek,
and
A.G.Ladurner
(2005).
Splicing regulates NAD metabolite binding to histone macroH2A.
|
| |
Nat Struct Mol Biol,
12,
624-625.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.C.Aguiar,
K.Takeyama,
C.He,
K.Kreinbrink,
and
M.A.Shipp
(2005).
B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity.
|
| |
J Biol Chem,
280,
33756-33765.
|
 |
|
|
|
|
 |
S.Chakravarthy,
S.K.Gundimella,
C.Caron,
P.Y.Perche,
J.R.Pehrson,
S.Khochbin,
and
K.Luger
(2005).
Structural characterization of the histone variant macroH2A.
|
| |
Mol Cell Biol,
25,
7616-7624.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |