|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transport protein,membrane protein
|
 |
|
Title:
|
 |
Crystal structure of the spinach aquaporin sopip2;1 in an open conformation to 3.9 resolution
|
|
Structure:
|
 |
Aquaporin. Chain: a, b, c, d. Synonym: plasma membrane intrinsic protein. Sopip2. Engineered: yes
|
|
Source:
|
 |
Spinacia oleracea. Spinach. Organism_taxid: 3562. Expressed in: pichia pastoris. Expression_system_taxid: 4922.
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
3.90Å
|
R-factor:
|
0.290
|
R-free:
|
0.332
|
|
|
Authors:
|
 |
S.Tornroth-Horsefield,Y.Wang,K.Hedfalk,U.Johanson,M.Karlsson, E.Tajkhorshid,R.Neutze,P.Kjellbom
|
Key ref:
|
 |
S.Törnroth-Horsefield
et al.
(2006).
Structural mechanism of plant aquaporin gating.
Nature,
439,
688-694.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
28-Sep-05
|
Release date:
|
20-Dec-05
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
439:688-694
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural mechanism of plant aquaporin gating.
|
|
S.Törnroth-Horsefield,
Y.Wang,
K.Hedfalk,
U.Johanson,
M.Karlsson,
E.Tajkhorshid,
R.Neutze,
P.Kjellbom.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Plants counteract fluctuations in water supply by regulating all aquaporins in
the cell plasma membrane. Channel closure results either from the
dephosphorylation of two conserved serine residues under conditions of drought
stress, or from the protonation of a conserved histidine residue following a
drop in cytoplasmic pH due to anoxia during flooding. Here we report the X-ray
structure of the spinach plasma membrane aquaporin SoPIP2;1 in its closed
conformation at 2.1 A resolution and in its open conformation at 3.9 A
resolution, and molecular dynamics simulations of the initial events governing
gating. In the closed conformation loop D caps the channel from the cytoplasm
and thereby occludes the pore. In the open conformation loop D is displaced up
to 16 A and this movement opens a hydrophobic gate blocking the channel entrance
from the cytoplasm. These results reveal a molecular gating mechanism which
appears conserved throughout all plant plasma membrane aquaporins.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: Structures of the closed and open conformations of
SoPIP2;1. a, Stereo models of SoPIP2;1 in its open (blue) and
closed (green) conformations overlaid on that of AQP0 (light
grey; Protein Data Bank (PDB) entry 1YMG) and AQP1 (grey; PDB
entry 1J4N). b, c, Electron density for loop D in the closed (b)
and open (c) conformations. The structural model of the closed
conformation is coloured green and the open conformation is
coloured blue. Both 2F[o] - F[c] electron density maps are
contoured at 1.0 .
Residual electron density in c indicates that the closed
conformation is also present in partial occupancy.
|
 |
Figure 5.
Figure 5: Electron density at the sites of regulation by
phosphorylation and pH for SoPIP2;1 in its closed conformation.
a, Close-up view of the divalent-cation-binding site showing
the location of the Cd^2+ ion (purple) and the network of
hydrogen bonds linking Gly 30 and Glu 31 through Arg 118 to Arg
190 and Asp 191 of loop D. b, Close-up view of the
phosphorylation residue Ser 115, illustrating its hydrogen bond
to Glu 31. c, Electron density for Ser 274, which contacts Pro
199 and Leu 200 of a neighbouring monomer of the SoPIP2;1
tetramer. Overlaid in grey is the structure of the open
conformation of SoPIP2;1, indicating that a steric clash with
Leu 197 prevents helix 5 from adopting this conformation when
Ser 274 is dephosphorylated. d, Close-up view of His 193. When
protonated, an alternative conformation for His 193 (grey) may
be adopted that forms a salt bridge to Asp 28. All 2F[o] - F[c]
maps are contoured at 1.0 .
Numbers are distances in Å.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2006,
439,
688-694)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.Muries,
M.Faize,
M.Carvajal,
and
M.d.e.l. .C.Martínez-Ballesta
(2011).
Identification and differential induction of the expression of aquaporins by salinity in broccoli plants.
|
| |
Mol Biosyst,
7,
1322-1335.
|
 |
|
|
|
|
 |
G.P.Bienert,
M.D.Bienert,
T.P.Jahn,
M.Boutry,
and
F.Chaumont
(2011).
Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.
|
| |
Plant J,
66,
306-317.
|
 |
|
|
|
|
 |
I.Plasencia,
S.Survery,
S.Ibragimova,
J.S.Hansen,
P.Kjellbom,
C.Helix-Nielsen,
U.Johanson,
and
O.G.Mouritsen
(2011).
Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes.
|
| |
PLoS One,
6,
e14674.
|
 |
|
|
|
|
 |
J.Sakurai-Ishikawa,
M.Murai-Hatano,
H.Hayashi,
A.Ahamed,
K.Fukushi,
T.Matsumoto,
and
Y.Kitagawa
(2011).
Transpiration from shoots triggers diurnal changes in root aquaporin expression.
|
| |
Plant Cell Environ,
34,
1150-1163.
|
 |
|
|
|
|
 |
L.Xin,
H.Su,
C.H.Nielsen,
C.Tang,
J.Torres,
and
Y.Mu
(2011).
Water permeation dynamics of AqpZ: A tale of two states.
|
| |
Biochim Biophys Acta,
1808,
1581-1586.
|
 |
|
|
|
|
 |
M.Gilliham,
M.Dayod,
B.J.Hocking,
B.Xu,
S.J.Conn,
B.N.Kaiser,
R.A.Leigh,
and
S.D.Tyerman
(2011).
Calcium delivery and storage in plant leaves: exploring the link with water flow.
|
| |
J Exp Bot,
62,
2233-2250.
|
 |
|
|
|
|
 |
R.M.Hove,
and
M.Bhave
(2011).
Plant aquaporins with non-aqua functions: deciphering the signature sequences.
|
| |
Plant Mol Biol,
75,
413-430.
|
 |
|
|
|
|
 |
S.Dietz,
J.von Bülow,
E.Beitz,
and
U.Nehls
(2011).
The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions.
|
| |
New Phytol,
190,
927-940.
|
 |
|
|
|
|
 |
T.Horie,
T.Kaneko,
G.Sugimoto,
S.Sasano,
S.K.Panda,
M.Shibasaka,
and
M.Katsuhara
(2011).
Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots.
|
| |
Plant Cell Physiol,
52,
663-675.
|
 |
|
|
|
|
 |
A.B.Waight,
J.Love,
and
D.N.Wang
(2010).
Structure and mechanism of a pentameric formate channel.
|
| |
Nat Struct Mol Biol,
17,
31-37.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.Yool,
E.A.Brown,
and
G.A.Flynn
(2010).
Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer.
|
| |
Clin Exp Pharmacol Physiol,
37,
403-409.
|
 |
|
|
|
|
 |
C.Ferndahl,
N.Bonander,
C.Logez,
R.Wagner,
L.Gustafsson,
C.Larsson,
K.Hedfalk,
R.A.Darby,
and
R.M.Bill
(2010).
Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory.
|
| |
Microb Cell Fact,
9,
47.
|
 |
|
|
|
|
 |
C.Maurel,
T.Simonneau,
and
M.Sutka
(2010).
The significance of roots as hydraulic rheostats.
|
| |
J Exp Bot,
61,
3191-3198.
|
 |
|
|
|
|
 |
I.Bahar,
T.R.Lezon,
A.Bakan,
and
I.H.Shrivastava
(2010).
Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins.
|
| |
Chem Rev,
110,
1463-1497.
|
 |
|
|
|
|
 |
J.Bellati,
K.Alleva,
G.Soto,
V.Vitali,
C.Jozefkowicz,
and
G.Amodeo
(2010).
Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression.
|
| |
Plant Mol Biol,
74,
105-118.
|
 |
|
|
|
|
 |
K.G.Kline,
G.A.Barrett-Wilt,
and
M.R.Sussman
(2010).
In planta changes in protein phosphorylation induced by the plant hormone abscisic acid.
|
| |
Proc Natl Acad Sci U S A,
107,
15986-15991.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
P.Durek,
R.Schmidt,
J.L.Heazlewood,
A.Jones,
D.MacLean,
A.Nagel,
B.Kersten,
and
W.X.Schulze
(2010).
PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update.
|
| |
Nucleic Acids Res,
38,
D828-D834.
|
 |
|
|
|
|
 |
R.Oliva,
G.Calamita,
J.M.Thornton,
and
M.Pellegrini-Calace
(2010).
Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity.
|
| |
Proc Natl Acad Sci U S A,
107,
4135-4140.
|
 |
|
|
|
|
 |
Y.Wang,
and
E.Tajkhorshid
(2010).
Nitric oxide conduction by the brain aquaporin AQP4.
|
| |
Proteins,
78,
661-670.
|
 |
|
|
|
|
 |
A.B.Gupta,
and
R.Sankararamakrishnan
(2009).
Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective.
|
| |
BMC Plant Biol,
9,
134.
|
 |
|
|
|
|
 |
A.K.Azad,
Y.Sawa,
T.Ishikawa,
and
H.Shibata
(2009).
Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.
|
| |
Appl Environ Microbiol,
75,
2792-2797.
|
 |
|
|
|
|
 |
E.Migliati,
N.Meurice,
P.DuBois,
J.S.Fang,
S.Somasekharan,
E.Beckett,
G.Flynn,
and
A.J.Yool
(2009).
Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site.
|
| |
Mol Pharmacol,
76,
105-112.
|
 |
|
|
|
|
 |
E.Zelazny,
U.Miecielica,
J.W.Borst,
M.A.Hemminga,
and
F.Chaumont
(2009).
An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane.
|
| |
Plant J,
57,
346-355.
|
 |
|
|
|
|
 |
F.A.Hays,
Z.Roe-Zurz,
M.Li,
L.Kelly,
F.Gruswitz,
A.Sali,
and
R.M.Stroud
(2009).
Ratiocinative screen of eukaryotic integral membrane protein expression and solubilization for structure determination.
|
| |
J Struct Funct Genomics,
10,
9.
|
 |
|
|
|
|
 |
G.Benga
(2009).
Water channel proteins (later called aquaporins) and relatives: past, present, and future.
|
| |
IUBMB Life,
61,
112-133.
|
 |
|
|
|
|
 |
G.Fischer,
U.Kosinska-Eriksson,
C.Aponte-Santamaría,
M.Palmgren,
C.Geijer,
K.Hedfalk,
S.Hohmann,
B.L.de Groot,
R.Neutze,
and
K.Lindkvist-Petersson
(2009).
Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
|
| |
PLoS Biol,
7,
e1000130.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.B.Moeller,
N.MacAulay,
M.A.Knepper,
and
R.A.Fenton
(2009).
Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating.
|
| |
Am J Physiol Renal Physiol,
296,
F649-F657.
|
 |
|
|
|
|
 |
J.D.Ho,
R.Yeh,
A.Sandstrom,
I.Chorny,
W.E.Harries,
R.A.Robbins,
L.J.Miercke,
and
R.M.Stroud
(2009).
Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance.
|
| |
Proc Natl Acad Sci U S A,
106,
7437-7442.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Alleva,
O.Chara,
M.R.Sutka,
and
G.Amodeo
(2009).
Analysis of the source of heterogeneity in the osmotic response of plant membrane vesicles.
|
| |
Eur Biophys J,
38,
175-184.
|
 |
|
|
|
|
 |
L.H.Wegner,
and
U.Zimmermann
(2009).
Hydraulic conductance and K+ transport into the xylem depend on radial volume flow, rather than on xylem pressure, in roots of intact, transpiring maize seedlings.
|
| |
New Phytol,
181,
361-373.
|
 |
|
|
|
|
 |
M.Freigassner,
H.Pichler,
and
A.Glieder
(2009).
wTuning microbial hosts for membrane protein production.
|
| |
Microb Cell Fact,
8,
69.
|
 |
|
|
|
|
 |
M.Li,
F.A.Hays,
Z.Roe-Zurz,
L.Vuong,
L.Kelly,
C.M.Ho,
R.M.Robbins,
U.Pieper,
J.D.O'Connell,
L.J.Miercke,
K.M.Giacomini,
A.Sali,
and
R.M.Stroud
(2009).
Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening.
|
| |
J Mol Biol,
385,
820-830.
|
 |
|
|
|
|
 |
M.Moshelion,
C.Hachez,
Q.Ye,
D.Cavez,
M.Bajji,
R.Jung,
and
F.Chaumont
(2009).
Membrane water permeability and aquaporin expression increase during growth of maize suspension cultured cells.
|
| |
Plant Cell Environ,
32,
1334-1345.
|
 |
|
|
|
|
 |
N.T.Hovijitra,
J.J.Wuu,
B.Peaker,
and
J.R.Swartz
(2009).
Cell-free synthesis of functional aquaporin Z in synthetic liposomes.
|
| |
Biotechnol Bioeng,
104,
40-49.
|
 |
|
|
|
|
 |
R.B.Heinen,
Q.Ye,
and
F.Chaumont
(2009).
Role of aquaporins in leaf physiology.
|
| |
J Exp Bot,
60,
2971-2985.
|
 |
|
|
|
|
 |
T.C.Terwilliger,
D.Stuart,
and
S.Yokoyama
(2009).
Lessons from structural genomics.
|
| |
Annu Rev Biophys,
38,
371-383.
|
 |
|
|
|
|
 |
U.Ludewig,
and
M.Dynowski
(2009).
Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet.
|
| |
Cell Mol Life Sci,
66,
3161-3175.
|
 |
|
|
|
|
 |
Z.E.Newby,
J.D.O'Connell,
F.Gruswitz,
F.A.Hays,
W.E.Harries,
I.M.Harwood,
J.D.Ho,
J.K.Lee,
D.F.Savage,
L.J.Miercke,
and
R.M.Stroud
(2009).
A general protocol for the crystallization of membrane proteins for X-ray structural investigation.
|
| |
Nat Protoc,
4,
619-637.
|
 |
|
|
|
|
 |
A.B.Wöhri,
L.C.Johansson,
P.Wadsten-Hindrichsen,
W.Y.Wahlgren,
G.Fischer,
R.Horsefield,
G.Katona,
M.Nyblom,
F.Oberg,
G.Young,
R.J.Cogdell,
N.J.Fraser,
S.Engström,
and
R.Neutze
(2008).
A lipidic-sponge phase screen for membrane protein crystallization.
|
| |
Structure,
16,
1003-1009.
|
 |
|
|
|
|
 |
A.Backmark,
M.Nyblom,
S.Törnroth-Horsefield,
U.Kosinska-Eriksson,
K.Nordén,
M.Fellert,
P.Kjellbom,
U.Johanson,
K.Hedfalk,
K.Lindkvist-Petersson,
R.Neutze,
and
R.Horsefield
(2008).
Affinity tags can reduce merohedral twinning of membrane protein crystals.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
1183-1186.
|
 |
|
|
|
|
 |
A.K.Azad,
M.Katsuhara,
Y.Sawa,
T.Ishikawa,
and
H.Shibata
(2008).
Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.
|
| |
Plant Cell Physiol,
49,
1196-1208.
|
 |
|
|
|
|
 |
A.Rath,
and
C.M.Deber
(2008).
Surface recognition elements of membrane protein oligomerization.
|
| |
Proteins,
70,
786-793.
|
 |
|
|
|
|
 |
C.Maurel,
L.Verdoucq,
D.T.Luu,
and
V.Santoni
(2008).
Plant aquaporins: membrane channels with multiple integrated functions.
|
| |
Annu Rev Plant Biol,
59,
595-624.
|
 |
|
|
|
|
 |
D.Liu,
L.Tu,
L.Wang,
Y.Li,
L.Zhu,
and
X.Zhang
(2008).
Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers.
|
| |
Plant Cell Rep,
27,
1385-1394.
|
 |
|
|
|
|
 |
E.Gunnarson,
M.Zelenina,
G.Axehult,
Y.Song,
A.Bondar,
P.Krieger,
H.Brismar,
S.Zelenin,
and
A.Aperia
(2008).
Identification of a molecular target for glutamate regulation of astrocyte water permeability.
|
| |
Glia,
56,
587-596.
|
 |
|
|
|
|
 |
E.J.Kamsteeg,
P.J.Savelkoul,
G.Hendriks,
I.B.Konings,
N.M.Nivillac,
A.K.Lagendijk,
P.van der Sluijs,
and
P.M.Deen
(2008).
Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258.
|
| |
Pflugers Arch,
455,
1041-1054.
|
 |
|
|
|
|
 |
E.P.Carpenter,
K.Beis,
A.D.Cameron,
and
S.Iwata
(2008).
Overcoming the challenges of membrane protein crystallography.
|
| |
Curr Opin Struct Biol,
18,
581-586.
|
 |
|
|
|
|
 |
G.Langer,
S.X.Cohen,
V.S.Lamzin,
and
A.Perrakis
(2008).
Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.
|
| |
Nat Protoc,
3,
1171-1179.
|
 |
|
|
|
|
 |
G.W.Li,
M.H.Zhang,
W.M.Cai,
W.N.Sun,
and
W.A.Su
(2008).
Characterization of OsPIP2;7, a water channel protein in rice.
|
| |
Plant Cell Physiol,
49,
1851-1858.
|
 |
|
|
|
|
 |
H.Bhattacharjee,
R.Mukhopadhyay,
S.Thiyagarajan,
and
B.P.Rosen
(2008).
Aquaglyceroporins: ancient channels for metalloids.
|
| |
J Biol,
7,
33.
|
 |
|
|
|
|
 |
J.A.Danielson,
and
U.Johanson
(2008).
Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens.
|
| |
BMC Plant Biol,
8,
45.
|
 |
|
|
|
|
 |
J.Hsin,
A.Arkhipov,
Y.Yin,
J.E.Stone,
and
K.Schulten
(2008).
Using VMD: an introductory tutorial.
|
| |
Curr Protoc Bioinformatics,
(),
Unit 5.7.
|
 |
|
|
|
|
 |
K.L.Forrest,
and
M.Bhave
(2008).
The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features.
|
| |
Funct Integr Genomics,
8,
115-133.
|
 |
|
|
|
|
 |
M.C.Martínez-Ballesta,
F.Cabañero,
E.Olmos,
P.M.Periago,
C.Maurel,
and
M.Carvajal
(2008).
Two different effects of calcium on aquaporins in salinity-stressed pepper plants.
|
| |
Planta,
228,
15-25.
|
 |
|
|
|
|
 |
M.Fischer,
and
R.Kaldenhoff
(2008).
On the pH Regulation of Plant Aquaporins.
|
| |
J Biol Chem,
283,
33889-33892.
|
 |
|
|
|
|
 |
M.Katsuhara,
and
Y.T.Hanba
(2008).
Barley plasma membrane intrinsic proteins (PIP Aquaporins) as water and CO2 transporters.
|
| |
Pflugers Arch,
456,
687-691.
|
 |
|
|
|
|
 |
M.Maeshima,
and
F.Ishikawa
(2008).
ER membrane aquaporins in plants.
|
| |
Pflugers Arch,
456,
709-716.
|
 |
|
|
|
|
 |
M.Murai-Hatano,
T.Kuwagata,
J.Sakurai,
H.Nonami,
A.Ahamed,
K.Nagasuga,
T.Matsunami,
K.Fukushi,
M.Maeshima,
and
M.Okada
(2008).
Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins.
|
| |
Plant Cell Physiol,
49,
1294-1305.
|
 |
|
|
|
|
 |
R.Horsefield,
K.Nordén,
M.Fellert,
A.Backmark,
S.Törnroth-Horsefield,
A.C.Terwisscha van Scheltinga,
J.Kvassman,
P.Kjellbom,
U.Johanson,
and
R.Neutze
(2008).
High-resolution x-ray structure of human aquaporin 5.
|
| |
Proc Natl Acad Sci U S A,
105,
13327-13332.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Kaldenhoff,
M.Ribas-Carbo,
J.F.Sans,
C.Lovisolo,
M.Heckwolf,
and
N.Uehlein
(2008).
Aquaporins and plant water balance.
|
| |
Plant Cell Environ,
31,
658-666.
|
 |
|
|
|
|
 |
S.Sasaki
(2008).
Introduction for Special issue for Aquaporin: expanding the world of aquaporins: new members and new functions.
|
| |
Pflugers Arch,
456,
647-649.
|
 |
|
|
|
|
 |
V.Van Wilder,
U.Miecielica,
H.Degand,
R.Derua,
E.Waelkens,
and
F.Chaumont
(2008).
Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated.
|
| |
Plant Cell Physiol,
49,
1364-1377.
|
 |
|
|
|
|
 |
Y.Boursiac,
J.Boudet,
O.Postaire,
D.T.Luu,
C.Tournaire-Roux,
and
C.Maurel
(2008).
Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization.
|
| |
Plant J,
56,
207-218.
|
 |
|
|
|
|
 |
Y.Boursiac,
S.Prak,
J.Boudet,
O.Postaire,
D.T.Luu,
C.Tournaire-Roux,
V.Santoni,
and
C.Maurel
(2008).
The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins.
|
| |
Plant Signal Behav,
3,
1096-1098.
|
 |
|
|
|
|
 |
Y.Wang,
and
E.Tajkhorshid
(2008).
Electrostatic funneling of substrate in mitochondrial inner membrane carriers.
|
| |
Proc Natl Acad Sci U S A,
105,
9598-9603.
|
 |
|
|
|
|
 |
A.Bansal,
and
R.Sankararamakrishnan
(2007).
Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters.
|
| |
BMC Struct Biol,
7,
27.
|
 |
|
|
|
|
 |
A.J.McElrone,
J.Bichler,
W.T.Pockman,
R.N.Addington,
C.R.Linder,
and
R.B.Jackson
(2007).
Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.
|
| |
Plant Cell Environ,
30,
1411-1421.
|
 |
|
|
|
|
 |
D.L.Minor
(2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
|
| |
Neuron,
54,
511-533.
|
 |
|
|
|
|
 |
D.Loqué,
S.Lalonde,
L.L.Looger,
N.von Wirén,
and
W.B.Frommer
(2007).
A cytosolic trans-activation domain essential for ammonium uptake.
|
| |
Nature,
446,
195-198.
|
 |
|
|
|
|
 |
E.Zelazny,
J.W.Borst,
M.Muylaert,
H.Batoko,
M.A.Hemminga,
and
F.Chaumont
(2007).
FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization.
|
| |
Proc Natl Acad Sci U S A,
104,
12359-12364.
|
 |
|
|
|
|
 |
F.Secchi,
C.Lovisolo,
N.Uehlein,
R.Kaldenhoff,
and
A.Schubert
(2007).
Isolation and functional characterization of three aquaporins from olive (Olea europaea L.).
|
| |
Planta,
225,
381-392.
|
 |
|
|
|
|
 |
H.Viadiu,
T.Gonen,
and
T.Walz
(2007).
Projection map of aquaporin-9 at 7 A resolution.
|
| |
J Mol Biol,
367,
80-88.
|
 |
|
|
|
|
 |
J.A.Lake,
and
J.E.Gray
(2007).
A diversity of scales.
|
| |
New Phytol,
173,
670-673.
|
 |
|
|
|
|
 |
J.Standfuss,
G.Xie,
P.C.Edwards,
M.Burghammer,
D.D.Oprian,
and
G.F.Schertler
(2007).
Crystal structure of a thermally stable rhodopsin mutant.
|
| |
J Mol Biol,
372,
1179-1188.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Lundstrom
(2007).
Structural genomics and drug discovery.
|
| |
J Cell Mol Med,
11,
224-238.
|
 |
|
|
|
|
 |
M.A.White,
K.M.Clark,
E.J.Grayhack,
and
M.E.Dumont
(2007).
Characteristics affecting expression and solubilization of yeast membrane proteins.
|
| |
J Mol Biol,
365,
621-636.
|
 |
|
|
|
|
 |
M.Hashido,
A.Kidera,
and
M.Ikeguchi
(2007).
Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations.
|
| |
Biophys J,
93,
373-385.
|
 |
|
|
|
|
 |
P.J.Bond,
J.P.Derrick,
and
M.S.Sansom
(2007).
Membrane simulations of OpcA: gating in the loops?
|
| |
Biophys J,
92,
L23-L25.
|
 |
|
|
|
|
 |
S.Newstead,
H.Kim,
G.von Heijne,
S.Iwata,
and
D.Drew
(2007).
High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
104,
13936-13941.
|
 |
|
|
|
|
 |
W.G.Choi,
and
D.M.Roberts
(2007).
Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress.
|
| |
J Biol Chem,
282,
24209-24218.
|
 |
|
|
|
|
 |
Y.Zhang,
Y.Wang,
L.Jiang,
Y.Xu,
Y.Wang,
D.Lu,
and
F.Chen
(2007).
Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas.
|
| |
Acta Biochim Biophys Sin (Shanghai),
39,
787-794.
|
 |
|
|
|
|
 |
Y.Zhou,
N.Setz,
C.Niemietz,
H.Qu,
C.E.Offler,
S.D.Tyerman,
and
J.W.Patrick
(2007).
Aquaporins and unloading of phloem-imported water in coats of developing bean seeds.
|
| |
Plant Cell Environ,
30,
1566-1577.
|
 |
|
|
|
|
 |
A.R.Aricescu,
R.Assenberg,
R.M.Bill,
D.Busso,
V.T.Chang,
S.J.Davis,
A.Dubrovsky,
L.Gustafsson,
K.Hedfalk,
U.Heinemann,
I.M.Jones,
D.Ksiazek,
C.Lang,
K.Maskos,
A.Messerschmidt,
S.Macieira,
Y.Peleg,
A.Perrakis,
A.Poterszman,
G.Schneider,
T.K.Sixma,
J.L.Sussman,
G.Sutton,
N.Tarboureich,
T.Zeev-Ben-Mordehai,
and
E.Y.Jones
(2006).
Eukaryotic expression: developments for structural proteomics.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1114-1124.
|
 |
|
|
|
|
 |
J.P.Morth,
T.L.Sørensen,
and
P.Nissen
(2006).
Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
877-882.
|
 |
|
|
|
|
 |
J.Yu,
A.J.Yool,
K.Schulten,
and
E.Tajkhorshid
(2006).
Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1.
|
| |
Structure,
14,
1411-1423.
|
 |
|
|
|
|
 |
K.Hedfalk,
S.Törnroth-Horsefield,
M.Nyblom,
U.Johanson,
P.Kjellbom,
and
R.Neutze
(2006).
Aquaporin gating.
|
| |
Curr Opin Struct Biol,
16,
447-456.
|
 |
|
|
|
|
 |
M.Ã.˜.Jensen,
and
O.G.Mouritsen
(2006).
Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF.
|
| |
Biophys J,
90,
2270-2284.
|
 |
|
|
|
|
 |
R.Grisshammer
(2006).
Understanding recombinant expression of membrane proteins.
|
| |
Curr Opin Biotechnol,
17,
337-340.
|
 |
|
|
|
|
 |
R.Hedrich,
and
I.Marten
(2006).
30-year progress of membrane transport in plants.
|
| |
Planta,
224,
725-739.
|
 |
|
|
|
|
 |
R.Kaldenhoff,
and
M.Fischer
(2006).
Aquaporins in plants.
|
| |
Acta Physiol (Oxf),
187,
169-176.
|
 |
|
|
|
|
 |
S.Wagner,
M.L.Bader,
D.Drew,
and
J.W.de Gier
(2006).
Rationalizing membrane protein overexpression.
|
| |
Trends Biotechnol,
24,
364-371.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |