spacer
spacer

PDBsum entry 2awk

Go to PDB code: 
protein metals links
Luminescent protein PDB id
2awk

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
225 a.a. *
Metals
_MG
Waters ×462
* Residue conservation analysis
PDB id:
2awk
Name: Luminescent protein
Title: Gfp r96m mature chromophore
Structure: Green fluorescent protein. Chain: a. Fragment: residues 1-229. Engineered: yes. Mutation: yes
Source: Aequorea victoria. Organism_taxid: 6100. Gene: gfp. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.15Å     R-factor:   0.188     R-free:   0.188
Authors: T.I.Wood,D.P.Barondeau,C.Hitomi,C.J.Kassmann,J.A.Tainer,E.D.Getzoff
Key ref:
T.I.Wood et al. (2005). Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Biochemistry, 44, 16211-16220. PubMed id: 16331981 DOI: 10.1021/bi051388j
Date:
01-Sep-05     Release date:   18-Apr-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P42212  (GFP_AEQVI) -  Green fluorescent protein from Aequorea victoria
Seq:
Struc:
238 a.a.
225 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 

 
DOI no: 10.1021/bi051388j Biochemistry 44:16211-16220 (2005)
PubMed id: 16331981  
 
 
Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
T.I.Wood, D.P.Barondeau, C.Hitomi, C.J.Kassmann, J.A.Tainer, E.D.Getzoff.
 
  ABSTRACT  
 
Aequoria victoria green fluorescent protein (GFP) is a revolutionary molecular biology tool because of its spontaneous peptide backbone cyclization and chromophore formation from residues Ser65, Tyr66, and Gly67. Here we use structure-based design, comprehensive targeted mutagenesis, and high-resolution crystallography to probe the significant functional role of conserved Arg96 (R96) in chromophore maturation. The R96M GFP variant, in which the R96M side chain is similar in volume but lacks the R96 positive charge, exhibits dramatically slower chromophore maturation kinetics (from hours to months). Comparison of the precyclized conformation of the chromophore-forming residues with the mature R96M chromophore reveals a similar Y66 conformer, contrary to the large Y66 conformational change previously defined in the slowly maturing R96A variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. Comprehensive R96 mutagenesis and fluorescent colony screening indicate that only the R96K substitution restores wild-type maturation kinetics. Further, we show that the slowly maturing R96A variant can be complemented with a Q183R second-site mutation designed to restore the missing R96 positive charge and rapid fluorophore biosynthesis. Moreover, comparative structural analysis of R96M, R96K, R96A/Q183R, and wild-type GFP reveals the importance of the presence of positive charge, rather than its exact position. Together, these structural, mutational, and biochemical results establish a pivotal role for the R96 positive charge in accelerating the GFP post-translational modification, with implications for peptide backbone cyclization in GFP, its homologues, and related biological systems.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21059931 R.A.Chica, M.M.Moore, B.D.Allen, and S.L.Mayo (2010).
Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
  Proc Natl Acad Sci U S A, 107, 20257-20262.
PDB codes: 3ned 3nez
20345907 R.P.Ilagan, E.Rhoades, D.F.Gruber, H.T.Kao, V.A.Pieribone, and L.Regan (2010).
A new bright green-emitting fluorescent protein--engineered monomeric and dimeric forms.
  FEBS J, 277, 1967-1978.  
19364318 A.A.Pakhomov, and V.I.Martynov (2009).
Posttranslational chemistry of proteins of the GFP family.
  Biochemistry (Mosc), 74, 250-259.  
19865751 J.Rajput, D.B.Rahbek, L.H.Andersen, T.Rocha-Rinza, O.Christiansen, K.B.Bravaya, A.V.Erokhin, A.V.Bochenkova, K.M.Solntsev, J.Dong, J.Kowalik, L.M.Tolbert, M.Axman Petersen, and M.Brøndsted Nielsen (2009).
Photoabsorption studies of neutral green fluorescent protein model chromophores in vacuo.
  Phys Chem Chem Phys, 11, 9996.  
19500621 N.Chen, Y.Ye, J.Zou, S.Li, S.Wang, A.Martin, R.Wohlhueter, and J.J.Yang (2009).
Fluorescence complementation via EF-hand interactions.
  J Biotechnol, 142, 205-213.  
19771333 T.D.Craggs (2009).
Green fluorescent protein: structure, folding and chromophore maturation.
  Chem Soc Rev, 38, 2865-2875.  
18759496 L.J.Pouwels, L.Zhang, N.H.Chan, P.C.Dorrestein, and R.M.Wachter (2008).
Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants.
  Biochemistry, 47, 10111-10122.  
  19079566 N.P.Lemay, A.L.Morgan, E.J.Archer, L.A.Dickson, C.M.Megley, and M.Zimmer (2008).
The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation.
  Chem Phys, 348, 152-160.  
18470931 O.V.Stepanenko, V.V.Verkhusha, M.M.Shavlovsky, I.M.Kuznetsova, V.N.Uversky, and K.K.Turoverov (2008).
Understanding the role of Arg96 in structure and stability of green fluorescent protein.
  Proteins, 73, 539-551.  
16980366 K.Nienhaus, F.Renzi, B.Vallone, J.Wiedenmann, and G.U.Nienhaus (2006).
Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499.
  Biophys J, 91, 4210-4220.
PDB code: 2c9i
16627946 N.Pletneva, S.Pletnev, T.Tikhonova, V.Popov, V.Martynov, and V.Pletnev (2006).
Structure of a red fluorescent protein from Zoanthus, zRFP574, reveals a novel chromophore.
  Acta Crystallogr D Biol Crystallogr, 62, 527-532.
PDB code: 2fl1
17078767 S.E.Jackson, T.D.Craggs, and J.R.Huang (2006).
Understanding the folding of GFP using biophysical techniques.
  Expert Rev Proteomics, 3, 545-559.  
17064887 S.J.Remington (2006).
Fluorescent proteins: maturation, photochemistry and photophysics.
  Curr Opin Struct Biol, 16, 714-721.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer