spacer
spacer

PDBsum entry 2art

Go to PDB code: 
protein ligands metals links
Ligase PDB id
2art

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
247 a.a. *
Ligands
LPA-AMP
Metals
_MG
Waters ×108
* Residue conservation analysis
PDB id:
2art
Name: Ligase
Title: Crystal structure of lipoate-protein ligase a bound with lipoyl-amp
Structure: Lipoate-protein ligase a. Chain: a. Engineered: yes
Source: Thermoplasma acidophilum. Organism_taxid: 2303. Gene: ta0514. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.40Å     R-factor:   0.197     R-free:   0.253
Authors: D.J.Kim,K.H.Kim,H.H.Lee,S.J.Lee,J.Y.Ha,H.J.Yoon,S.W.Suh
Key ref:
d.o. .J.Kim et al. (2005). Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains. J Biol Chem, 280, 38081-38089. PubMed id: 16141198 DOI: 10.1074/jbc.M507284200
Date:
22-Aug-05     Release date:   04-Oct-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9HKT1  (LPLAN_THEAC) -  Lipoate-protein ligase A subunit 1 from Thermoplasma acidophilum (strain ATCC 25905 / DSM 1728 / JCM 9062 / NBRC 15155 / AMRC-C165)
Seq:
Struc:
262 a.a.
247 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.6.3.1.20  - lipoate--protein ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl-[lipoyl-carrier protein] + (R)-lipoate + ATP = N6-[(R)-lipoyl]- L-lysyl-[lipoyl-carrier protein] + AMP + diphosphate + H+
L-lysyl-[lipoyl-carrier protein]
+ (R)-lipoate
+ ATP
= N(6)-[(R)-lipoyl]- L-lysyl-[lipoyl-carrier protein]
Bound ligand (Het Group name = AMP)
matches with 95.65% similarity
+ AMP
+ diphosphate
+ H(+)
      Cofactor: Mg(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M507284200 J Biol Chem 280:38081-38089 (2005)
PubMed id: 16141198  
 
 
Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains.
d.o. .J.Kim, K.H.Kim, H.H.Lee, S.J.Lee, J.Y.Ha, H.J.Yoon, S.W.Suh.
 
  ABSTRACT  
 
Lipoic acid is the covalently attached cofactor of several multi-component enzyme complexes that catalyze key metabolic reactions. Attachment of lipoic acid to the lipoyl-dependent enzymes is catalyzed by lipoate-protein ligases (LPLs). In Escherichia coli, two distinct enzymes lipoate-protein ligase A (LplA) and lipB-encoded lipoyltransferase (LipB) catalyze independent pathways for lipoylation of the target proteins. The reaction catalyzed by LplA occurs in two steps. First, LplA activates exogenously supplied lipoic acid at the expense of ATP to lipoyl-AMP. Next, it transfers the enzyme-bound lipoyl-AMP to the epsilon-amino group of a specific lysine residue of the lipoyl domain to give an amide linkage. To gain insight into the mechanism of action by LplA, we have determined the crystal structure of Thermoplasma acidophilum LplA in three forms: (i) the apo form; (ii) the ATP complex; and (iii) the lipoyl-AMP complex. The overall fold of LplA bears some resemblance to that of the biotinyl protein ligase module of the E. coli biotin holoenzyme synthetase/bio repressor (BirA). Lipoyl-AMP is bound deeply in the bifurcated pocket of LplA and adopts a U-shaped conformation. Only the phosphate group and part of the ribose sugar of lipoyl-AMP are accessible from the bulk solvent through a tunnel-like passage, whereas the rest of the activated intermediate is completely buried inside the active site pocket. This first view of the activated intermediate bound to LplA allowed us to propose a model of the complexes between Ta LplA and lipoyl domains, thus shedding light on the target protein/lysine residue specificity of LplA.
 
  Selected figure(s)  
 
Figure 1.
FIGURE 1. Electron density of the bound ligands and overall fold of Ta LplA. A, 2F[o] - F[c] electron density maps of the bound ligands. Atoms of the ligands are also labeled. B, ribbon diagram of Ta LplA. Secondary structure elements were assigned by PROMOTIF (26). -Helices, -strands, and loops are colored in red, blue, and yellow, respectively. Lipoyl-AMP bound near the center of LplA is shown in sticks. All the figures except Fig. 3 are drawn with PyMOL (DeLano, 2002, The PyMOL Molecular Graphics System, www.pymol.org). C, topology diagram of Ta LplA. -Strands are shown as triangles and -helices as circles. D, stereo C trace of Ta LplA. Every tenth residue is marked by a black dot, and every twentieth residue is labeled. Three signature sequence motifs are highlighted in colored lines: motif I (RRXXGGGXV(F/Y)HD at positions 71-82) in red, motif II (KhXGXA at positions 145-150) in green, and motif III (HXX(L/M)LXXX(D/N)LXXLXXhL at positions 161-177) in blue, respectively.
Figure 2.
FIGURE 2. Lipoyl-AMP binding to the active site. A, sectional view of the modeled complex showing the target lysine of the lipoyl domain in the entrance to the lipoyl-AMP binding pocket of Ta LplA. Note that oxygen atoms of the bound lipoyl-AMP are surrounded by the positively charged surface (colored in blue). B, stereo view of the active site around the bound lipoyl-AMP. Black dotted lines denote hydrogen bonds. Red balls represent water molecules. C, stereo view of the adenine ring of the bound lipoyl-AMP and surrounding residues. Main-chain atoms between Ala^78 and His81 are shown as sticks.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2005, 280, 38081-38089) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20534555 C.Uttamapinant, K.A.White, H.Baruah, S.Thompson, M.Fernández-Suárez, S.Puthenveetil, and A.Y.Ting (2010).
A fluorophore ligase for site-specific protein labeling inside living cells.
  Proc Natl Acad Sci U S A, 107, 10914-10919.  
19734307 C.O.Rock (2009).
Opening a new path to lipoic acid.
  J Bacteriol, 191, 6782-6784.  
19684135 F.A.Hermes, and J.E.Cronan (2009).
Scavenging of cytosolic octanoic acid by mutant LplA lipoate ligases allows growth of Escherichia coli strains lacking the LipB octanoyltransferase of lipoic acid synthesis.
  J Bacteriol, 191, 6796-6803.  
19234698 H.J.Moon, M.Jeya, I.S.Yu, J.H.Ji, D.K.Oh, and J.K.Lee (2009).
Chaperone-aided expression of LipA and LplA followed by the increase in alpha-lipoic acid production.
  Appl Microbiol Biotechnol, 83, 329-337.  
19594830 M.G.Posner, A.Upadhyay, S.Bagby, D.W.Hough, and M.J.Danson (2009).
A unique lipoylation system in the Archaea. Lipoylation in Thermoplasma acidophilum requires two proteins.
  FEBS J, 276, 4012-4022.  
19570983 M.S.Schonauer, A.J.Kastaniotis, V.A.Kursu, J.K.Hiltunen, and C.L.Dieckmann (2009).
Lipoic acid synthesis and attachment in yeast mitochondria.
  J Biol Chem, 284, 23234-23242.  
19520844 Q.H.Christensen, and J.E.Cronan (2009).
The Thermoplasma acidophilum LplA-LplB complex defines a new class of bipartite lipoate-protein ligases.
  J Biol Chem, 284, 21317-21326.  
19863063 S.Puthenveetil, D.S.Liu, K.A.White, S.Thompson, and A.Y.Ting (2009).
Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase.
  J Am Chem Soc, 131, 16430-16438.  
  18677791 H.Baruah, S.Puthenveetil, Y.A.Choi, S.Shah, and A.Y.Ting (2008).
An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking.
  Angew Chem Int Ed Engl, 47, 7018-7021.  
18076036 d.o. .J.Kim, S.J.Lee, H.S.Kim, K.H.Kim, H.H.Lee, H.J.Yoon, and S.W.Suh (2008).
Structural basis of octanoic acid recognition by lipoate-protein ligase B.
  Proteins, 70, 1620-1625.
PDB codes: 2qhs 2qht 2qhu 2qhv
17908209 K.M.Keeney, J.A.Stuckey, and M.X.O'Riordan (2007).
LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence.
  Mol Microbiol, 66, 758-770.  
17244193 M.Allary, J.Z.Lu, L.Zhu, and S.T.Prigge (2007).
Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum.
  Mol Microbiol, 63, 1331-1344.  
18069893 S.Günther, L.Wallace, E.M.Patzewitz, P.J.McMillan, J.Storm, C.Wrenger, R.Bissett, T.K.Smith, and S.Müller (2007).
Apicoplast Lipoic Acid Protein Ligase B Is Not Essential for Plasmodium falciparum.
  PLoS Pathog, 3, e189.  
17086442 E.Bonilla, S.Medina-Leendertz, V.Villalobos, L.Molero, and A.Bohórquez (2006).
Paraquat-induced oxidative stress in drosophila melanogaster: effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid.
  Neurochem Res, 31, 1425-1432.  
16735476 Q.Ma, X.Zhao, A.Nasser Eddine, A.Geerlof, X.Li, J.E.Cronan, S.H.Kaufmann, and M.Wilmanns (2006).
The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase.
  Proc Natl Acad Sci U S A, 103, 8662-8667.
PDB code: 1w66
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer