spacer
spacer

PDBsum entry 2a54

Go to PDB code: 
protein metals Protein-protein interface(s) links
Luminescent protein PDB id
2a54

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
64 a.a. *
168 a.a. *
59 a.a. *
Metals
_CL
Waters ×574
* Residue conservation analysis
PDB id:
2a54
Name: Luminescent protein
Title: Fluorescent protein asfp595, a143s, on-state, 1min irradiation
Structure: Gfp-like non-fluorescent chromoprotein fp595 chain 1. Chain: a, c. Synonym: asfp595. Engineered: yes. Gfp-like non-fluorescent chromoprotein fp595 chain 2. Chain: b, d. Synonym: asfp595. Engineered: yes. Mutation: yes
Source: Anemonia sulcata. Snake-locks sea anemone. Organism_taxid: 6108. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Octamer (from PDB file)
Resolution:
1.45Å     R-factor:   0.177     R-free:   0.200
Authors: M.Andresen,M.C.Wahl,A.C.Stiel,F.Graeter,L.Schaefer,S.Trowitzsch, G.Weber,C.Eggeling,H.Grubmueller,S.W.Hell,S.Jakobs
Key ref:
M.Andresen et al. (2005). Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A, 102, 13070-13074. PubMed id: 16135569 DOI: 10.1073/pnas.0502772102
Date:
30-Jun-05     Release date:   16-Aug-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9GZ28  (NFCP_ANESU) -  GFP-like non-fluorescent chromoprotein FP595 from Anemonia sulcata
Seq:
Struc:
232 a.a.
64 a.a.*
Protein chains
Pfam   ArchSchema ?
Q9GZ28  (NFCP_ANESU) -  GFP-like non-fluorescent chromoprotein FP595 from Anemonia sulcata
Seq:
Struc:
232 a.a.
168 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9GZ28  (NFCP_ANESU) -  GFP-like non-fluorescent chromoprotein FP595 from Anemonia sulcata
Seq:
Struc:
232 a.a.
59 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1073/pnas.0502772102 Proc Natl Acad Sci U S A 102:13070-13074 (2005)
PubMed id: 16135569  
 
 
Structure and mechanism of the reversible photoswitch of a fluorescent protein.
M.Andresen, M.C.Wahl, A.C.Stiel, F.Gräter, L.V.Schäfer, S.Trowitzsch, G.Weber, C.Eggeling, H.Grubmüller, S.W.Hell, S.Jakobs.
 
  ABSTRACT  
 
Proteins that can be reversibly photoswitched between a fluorescent and a nonfluorescent state bear enormous potential in diverse fields, such as data storage, in vivo protein tracking, and subdiffraction resolution light microscopy. However, these proteins could hitherto not live up to their full potential because the molecular switching mechanism is not resolved. Here, we clarify the molecular photoswitching mechanism of asFP595, a green fluorescent protein (GFP)-like protein that can be transferred from a nonfluorescent "off" to a fluorescent "on" state and back again, by green and blue light, respectively. To this end, we establish reversible photoswitching of fluorescence in whole protein crystals and show that the switching kinetics in the crystal is identical with that in solution. Subsequent x-ray analysis demonstrated that upon the absorption of a green photon, the chromophore isomerizes from a trans (off) to a cis (on) state. Molecular dynamics calculations suggest that isomerization occurs through a bottom hula twist mechanism with concomitant rotation of both bonds of the chromophoric methine ring bridge. This insight into the switching mechanism should facilitate the targeted design of photoswitchable proteins. Reversible photoswitching of the protein chromophore system within intact crystals also constitutes a step toward the use of fluorescent proteins in three-dimensional data recording.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Overall structure of asFP595. A schematic ribbon representation of the quaternary tetrameric structure of asFP595 shows the four molecules in different colors and the chromophores highlighted in red.
Figure 5.
Fig. 5. MD simulations of the switching mechanism in asFP595. (a) The two possible isomerization mechanisms. (b) Forces due to the protein matrix opposing chromophore isomerization were calculated by nonequilibrium force-probe MD simulations; 10 trajectories were averaged for the four possible pathways (solid lines). For the rotate mechanism, the MYG p-hydroxyphenyl ring can either rotate toward the initially coplanar H197 (Rtop) or toward the other side (Rbot). Likewise, during HT isomerization, the bridging methine group can move along a top (HTtop) or bottom (HTbot) pathway. Control simulations of the chromophore in water show similar forces for the R and HT mechanisms (dashed curves). (Inset) MYG chromophore and relevant torsion angles. (c) Spontaneous trans-cis isomerization during free excited state MD simulations for the chromophore within the protein matrix (Upper) and in water (Lower), monitored through the dihedral angles (dashed curves) and (solid curves). The protein favors the HTbot mechanism, with both dihedral angles rotating simultaneously within a narrow time frame. Simulation of protein-free isomerization of the chromophore in water also follows HT; both directions (HTtop and HTbot) are observed in this case.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21525643 A.M.Orville, R.Buono, M.Cowan, A.Héroux, G.Shea-McCarthy, D.K.Schneider, J.M.Skinner, M.J.Skinner, D.Stoner-Ma, and R.M.Sweet (2011).
Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C.
  J Synchrotron Radiat, 18, 358-366.  
21240407 S.K.Ko, X.Chen, J.Yoon, and I.Shin (2011).
Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes.
  Chem Soc Rev, 40, 2120-2130.  
21909116 T.Grotjohann, I.Testa, M.Leutenegger, H.Bock, N.T.Urban, F.Lavoie-Cardinal, K.I.Willig, C.Eggeling, S.Jakobs, and S.W.Hell (2011).
Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.
  Nature, 478, 204-208.  
20126803 A.R.Faro, V.Adam, P.Carpentier, C.Darnault, D.Bourgeois, and E.de Rosny (2010).
Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins.
  Photochem Photobiol Sci, 9, 254-262.  
20416505 O.M.Subach, V.N.Malashkevich, W.D.Zencheck, K.S.Morozova, K.D.Piatkevich, S.C.Almo, and V.V.Verkhusha (2010).
Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.
  Chem Biol, 17, 333-341.
PDB codes: 3m22 3m24
20859582 S.Abbruzzetti, R.Bizzarri, S.Luin, R.Nifosì, B.Storti, C.Viappiani, and F.Beltram (2010).
Photoswitching of E222Q GFP mutants: "concerted" mechanism of chromophore isomerization and protonation.
  Photochem Photobiol Sci, 9, 1307-1319.  
19067572 C.M.Megley, L.A.Dickson, S.L.Maddalo, G.J.Chandler, and M.Zimmer (2009).
Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein.
  J Phys Chem B, 113, 302-308.  
19229892 G.U.Nienhaus, and J.Wiedenmann (2009).
Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development.
  Chemphyschem, 10, 1369-1379.  
19771331 H.E.Seward, and C.R.Bagshaw (2009).
The photochemistry of fluorescent proteins: implications for their biological applications.
  Chem Soc Rev, 38, 2842-2851.  
19771337 J.J.van Thor (2009).
Photoreactions and dynamics of the green fluorescent protein.
  Chem Soc Rev, 38, 2935-2950.  
19859977 J.Wiedenmann, F.Oswald, and G.U.Nienhaus (2009).
Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges.
  IUBMB Life, 61, 1029-1042.  
19771335 R.N.Day, and M.W.Davidson (2009).
The fluorescent protein palette: tools for cellular imaging.
  Chem Soc Rev, 38, 2887-2921.  
18658221 A.C.Stiel, M.Andresen, H.Bock, M.Hilbert, J.Schilde, A.Schönle, C.Eggeling, A.Egner, S.W.Hell, and S.Jakobs (2008).
Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.
  Biophys J, 95, 2989-2997.  
  19721695 A.V.Nemukhin, I.A.Topol, B.L.Grigorenko, A.P.Savitsky, and J.R.Collins (2008).
Conformation dependence of pKa's of the chromophores from the purple asFP595 and yellow zFP538 fluorescent proteins.
  Theochem, 863, 39-43.  
17615561 C.Li, Y.Zhu, I.Benz, M.A.Schmidt, W.Chen, A.Mulchandani, and C.Qiao (2008).
Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway.
  Biotechnol Bioeng, 99, 485-490.  
18574155 H.Mizuno, T.K.Mal, M.Wälchli, A.Kikuchi, T.Fukano, R.Ando, J.Jeyakanthan, J.Taka, Y.Shiro, M.Ikura, and A.Miyawaki (2008).
Light-dependent regulation of structural flexibility in a photochromic fluorescent protein.
  Proc Natl Acad Sci U S A, 105, 9227-9232.
PDB codes: 2z1o 2z6x 2z6y 2z6z
18369426 L.V.Schäfer, G.Groenhof, M.Boggio-Pasqua, M.A.Robb, and H.Grubmüller (2008).
Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.
  PLoS Comput Biol, 4, e1000034.  
18724362 M.Andresen, A.C.Stiel, J.Fölling, D.Wenzel, A.Schönle, A.Egner, C.Eggeling, S.W.Hell, and S.Jakobs (2008).
Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy.
  Nat Biotechnol, 26, 1035-1040.  
19005595 M.Erdélyi, M.Varedian, C.Sköld, I.B.Niklasson, J.Nurbo, A.Persson, J.Bergquist, and A.Gogoll (2008).
Chemistry and folding of photomodulable peptides--stilbene and thioaurone-type candidates for conformational switches.
  Org Biomol Chem, 6, 4356-4373.  
18454154 N.C.Shaner, M.Z.Lin, M.R.McKeown, P.A.Steinbach, K.L.Hazelwood, M.W.Davidson, and R.Y.Tsien (2008).
Improving the photostability of bright monomeric orange and red fluorescent proteins.
  Nat Methods, 5, 545-551.  
18355722 S.Kredel, K.Nienhaus, F.Oswald, M.Wolff, S.Ivanchenko, F.Cymer, A.Jeromin, F.J.Michel, K.D.Spindler, R.Heilker, G.U.Nienhaus, and J.Wiedenmann (2008).
Optimized and far-red-emitting variants of fluorescent protein eqFP611.
  Chem Biol, 15, 224-233.  
18682399 S.Pletnev, D.Shcherbo, D.M.Chudakov, N.Pletneva, E.M.Merzlyak, A.Wlodawer, Z.Dauter, and V.Pletnev (2008).
A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore.
  J Biol Chem, 283, 28980-28987.
PDB codes: 3bx9 3bxa 3bxb 3bxc
19017808 V.Adam, M.Lelimousin, S.Boehme, G.Desfonds, K.Nienhaus, M.J.Field, J.Wiedenmann, S.McSweeney, G.U.Nienhaus, and D.Bourgeois (2008).
Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations.
  Proc Natl Acad Sci U S A, 105, 18343-18348.
PDB codes: 2vvh 2vvi 2vvj
17704916 A.Müller-Taubenberger, and K.I.Anderson (2007).
Recent advances using green and red fluorescent protein variants.
  Appl Microbiol Biotechnol, 77, 1.  
19404424 C.Schultz (2007).
Molecular tools for cell and systems biology.
  HFSP J, 1, 230-248.  
17703215 D.M.Chudakov, S.Lukyanov, and K.A.Lukyanov (2007).
Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2.
  Nat Protoc, 2, 2024-2032.  
17372780 G.Mocz (2007).
Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics.
  Mar Biotechnol (NY), 9, 305-328.  
17420458 J.N.Henderson, H.W.Ai, R.E.Campbell, and S.J.Remington (2007).
Structural basis for reversible photobleaching of a green fluorescent protein homologue.
  Proc Natl Acad Sci U S A, 104, 6672-6677.
PDB codes: 2otb 2ote
17094157 L.V.Schäfer, G.Groenhof, A.R.Klingen, G.M.Ullmann, M.Boggio-Pasqua, M.A.Robb, and H.Grubmüller (2007).
Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra.
  Angew Chem Int Ed Engl, 46, 530-536.  
17262791 M.A.Schwentker, H.Bock, M.Hofmann, S.Jakobs, J.Bewersdorf, C.Eggeling, and S.W.Hell (2007).
Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching.
  Microsc Res Tech, 70, 269-280.  
17646653 M.Andresen, A.C.Stiel, S.Trowitzsch, G.Weber, C.Eggeling, M.C.Wahl, S.W.Hell, and S.Jakobs (2007).
Structural basis for reversible photoswitching in Dronpa.
  Proc Natl Acad Sci U S A, 104, 13005-13009.
PDB code: 2pox
17881826 N.Pletneva, V.Pletnev, T.Tikhonova, A.A.Pakhomov, V.Popov, V.I.Martynov, A.Wlodawer, Z.Dauter, and S.Pletnev (2007).
Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
  Acta Crystallogr D Biol Crystallogr, 63, 1082-1093.
PDB codes: 2icr 2ojk 2pxs 2pxw
17886433 N.V.Pletneva, S.V.Pletnev, D.M.Chudakov, T.V.Tikhonova, V.O.Popov, V.I.Martynov, A.Wlodawer, Z.Dauter, and V.Z.Pletnev (2007).
[Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom]
  Bioorg Khim, 33, 421-430.
PDB code: 2ogr
18027983 X.Shi, J.Basran, H.E.Seward, W.Childs, C.R.Bagshaw, and S.G.Boxer (2007).
Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers.
  Biochemistry, 46, 14403-14417.  
16761088 J.J.van Thor, and J.T.Sage (2006).
Charge transfer in green fluorescent protein.
  Photochem Photobiol Sci, 5, 597-602.  
16771707 J.Wiedenmann, and G.U.Nienhaus (2006).
Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family.
  Expert Rev Proteomics, 3, 361-374.  
16627946 N.Pletneva, S.Pletnev, T.Tikhonova, V.Popov, V.Martynov, and V.Pletnev (2006).
Structure of a red fluorescent protein from Zoanthus, zRFP574, reveals a novel chromophore.
  Acta Crystallogr D Biol Crystallogr, 62, 527-532.
PDB code: 2fl1
16761085 S.Habuchi, P.Dedecker, J.Hotta, C.Flors, R.Ando, H.Mizuno, A.Miyawaki, and J.Hofkens (2006).
Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching.
  Photochem Photobiol Sci, 5, 567-576.  
17064887 S.J.Remington (2006).
Fluorescent proteins: maturation, photochemistry and photophysics.
  Curr Opin Struct Biol, 16, 714-721.  
17125385 Y.Liu, H.R.Kim, and A.A.Heikal (2006).
Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments.
  J Phys Chem B, 110, 24138-24146.  
16314572 M.Hofmann, C.Eggeling, S.Jakobs, and S.W.Hell (2005).
Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins.
  Proc Natl Acad Sci U S A, 102, 17565-17569.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer