spacer
spacer

PDBsum entry 2a0l

Go to PDB code: 
protein metals Protein-protein interface(s) links
Membrane protein PDB id
2a0l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
214 a.a. *
105 a.a. *
116 a.a. *
Metals
__K ×4
* Residue conservation analysis
PDB id:
2a0l
Name: Membrane protein
Title: Crystal structure of kvap-33h1 fv complex
Structure: Voltage-gated potassium channel. Chain: a, b. Fragment: kvap k+ channel. Synonym: kvap. Engineered: yes. 33h1 fv fragment. Chain: c, e. Fragment: fv fragment,light chain. 33h1 fv fragment.
Source: Aeropyrum pernix. Organism_taxid: 56636. Gene: kvap_aerpe. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. House mouse. Organism_taxid: 10090. Other_details: mouse hybridoma.
Resolution:
3.90Å     R-factor:   0.358     R-free:   0.392
Authors: S.Y.Lee,A.Lee,J.Chen,R.Mackinnon
Key ref:
S.Y.Lee et al. (2005). Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A, 102, 15441-15446. PubMed id: 16223877 DOI: 10.1073/pnas.0507651102
Date:
16-Jun-05     Release date:   01-Nov-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Q9YDF8  (KVAP_AERPE) -  Voltage-gated potassium channel from Aeropyrum pernix (strain ATCC 700893 / DSM 11879 / JCM 9820 / NBRC 100138 / K1)
Seq:
Struc:
295 a.a.
214 a.a.
Protein chains
No UniProt id for this chain
Struc: 105 a.a.
Protein chains
No UniProt id for this chain
Struc: 116 a.a.
Key:    Secondary structure  CATH domain

 

 
DOI no: 10.1073/pnas.0507651102 Proc Natl Acad Sci U S A 102:15441-15446 (2005)
PubMed id: 16223877  
 
 
Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.
S.Y.Lee, A.Lee, J.Chen, R.MacKinnon.
 
  ABSTRACT  
 
Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K(+) channel KvAP, in complex with monoclonal Fv fragments (3.9 A) and without antibody fragments (8 A). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Structure of the KvAP-33HI complex and comparison with previous KvAP structures. (a) Stereo view of a single KvAP subunit from the side with extracellular solution above. S1-S4 helices are colored blue. (b) Stereo view of a single KvAP subunit of the KvAP-6E1 Fab complex (PDB ID code 1ORQ [PDB] ). (c) Comparison with the isolated voltage sensor structure. Stereo view of a superposition of the isolated voltage sensor (gold, PDB ID code 1ORS [PDB] ) and the KvAP-Fv complex (blue). The S2 helix (Leu-55 to Tyr-75) was used for superposition, and the S1 helix is not shown. Residues Asp-62, Asp-72, Arg-76, Glu-93, and Arg-133, which are important for channel function, are shown in ball-and-stick representation.
Figure 6.
Fig. 6. A model of the KvAP tetramer in the open conformation. The top-down view (a) and the side view (b) of the proposed model of the KvAP tetramer in the open conformation. Each subunit is colored blue, green, gold, and red. This model is the same as in Fig. 4b but it is shown as a tetramer to show the position of the voltage sensor relative to the pore.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21365680 A.Bernard, W.F.Vranken, B.Bardiaux, M.Nilges, and T.E.Malliavin (2011).
Bayesian estimation of NMR restraint potential and weight: A validation on a representative set of protein structures.
  Proteins, 79, 1525-1537.  
21127848 E.V.Schow, J.A.Freites, P.Cheng, A.Bernsel, G.von Heijne, S.H.White, and D.J.Tobias (2011).
Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
  J Membr Biol, 239, 35-48.  
21082721 G.J.Forse, N.Ram, D.R.Banatao, D.Cascio, M.R.Sawaya, H.E.Klock, S.A.Lesley, and T.O.Yeates (2011).
Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima.
  Protein Sci, 20, 168-178.
PDB code: 3o7o
21444776 L.Delemotte, M.Tarek, M.L.Klein, C.Amaral, and W.Treptow (2011).
Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations.
  Proc Natl Acad Sci U S A, 108, 6109-6114.  
21376775 R.Verma, and J.K.Ghosh (2011).
Phospholipid membrane-interaction of a peptide from S4 segment of KvAP K(+) channel and the influence of the positive charges and an identified heptad repeat in its interaction with a S3 peptide.
  Biochimie, 93, 1001-1011.  
20724162 T.A.Cross, M.Sharma, M.Yi, and H.X.Zhou (2011).
Influence of solubilizing environments on membrane protein structures.
  Trends Biochem Sci, 36, 117-125.  
20104563 A.Stary, S.J.Wacker, L.Boukharta, U.Zachariae, Y.Karimi-Nejad, J.Aqvist, G.Vriend, and B.L.de Groot (2010).
Toward a consensus model of the HERG potassium channel.
  ChemMedChem, 5, 455-467.  
20409475 C.L.Wee, D.Gavaghan, and M.S.Sansom (2010).
Interactions between a voltage sensor and a toxin via multiscale simulations.
  Biophys J, 98, 1558-1565.  
20851706 J.A.Butterwick, and R.MacKinnon (2010).
Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
  J Mol Biol, 403, 591-606.
PDB code: 2kyh
20092291 J.A.Cieslak, P.J.Focia, and A.Gross (2010).
Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel.
  Biochemistry, 49, 1486-1494.
PDB code: 3ifx
  21115696 L.R.Phillips, and K.J.Swartz (2010).
Position and motions of the S4 helix during opening of the Shaker potassium channel.
  J Gen Physiol, 136, 629-644.  
20197029 R.K.Finol-Urdaneta, J.R.McArthur, P.F.Juranka, R.J.French, and C.E.Morris (2010).
Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents.
  Biophys J, 98, 762-772.  
20445236 Z.S.Derewenda (2010).
Application of protein engineering to enhance crystallizability and improve crystal properties.
  Acta Crystallogr D Biol Crystallogr, 66, 604-615.  
18836841 A.V.Pischalnikova, and O.S.Sokolova (2009).
The domain and conformational organization in potassium voltage-gated ion channels.
  J Neuroimmune Pharmacol, 4, 71-82.  
19940918 D.Krepkiy, M.Mihailescu, J.A.Freites, E.V.Schow, D.L.Worcester, K.Gawrisch, D.J.Tobias, S.H.White, and K.J.Swartz (2009).
Structure and hydration of membranes embedded with voltage-sensing domains.
  Nature, 462, 473-479.  
19564683 F.Ni, B.K.Poon, Q.Wang, and J.Ma (2009).
Application of normal-mode refinement to X-ray crystal structures at the lower resolution limit.
  Acta Crystallogr D Biol Crystallogr, 65, 633-643.  
19545635 G.M.Clayton, S.G.Aller, J.Wang, V.Unger, and J.H.Morais-Cabral (2009).
Combining electron crystallography and X-ray crystallography to study the MlotiK1 cyclic nucleotide-regulated potassium channel.
  J Struct Biol, 167, 220-226.  
19003888 H.Qi, L.Yang, R.Xue, Y.Song, S.Wang, and F.Li (2009).
The third and fourth transmembrane domains of Slc11a1: Comparison of their structures and positioning in phospholipid model membranes.
  Biopolymers, 92, 52-64.  
  19177357 J.Hammon, D.V.Palanivelu, J.Chen, C.Patel, and D.L.Minor (2009).
A green fluorescent protein screen for identification of well-expressed membrane proteins from a cohort of extremophilic organisms.
  Protein Sci, 18, 121-133.  
19281310 L.Birnbaumer (2009).
The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations.
  Annu Rev Pharmacol Toxicol, 49, 395-426.  
19172261 L.Stevens, M.Ju, and D.Wray (2009).
Roles of surface residues of intracellular domains of heag potassium channels.
  Eur Biophys J, 38, 523-532.  
  19713752 M.C.Koag, and D.M.Papazian (2009).
Voltage-dependent conformational changes of KVAP S4 segment in bacterial membrane environment.
  Channels (Austin), 3, 356-365.  
19883298 M.J.Serrano-Vega, and C.G.Tate (2009).
Transferability of thermostabilizing mutations between beta-adrenergic receptors.
  Mol Membr Biol, 26, 385-396.  
19402748 M.Samsó, W.Feng, I.N.Pessah, and P.D.Allen (2009).
Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating.
  PLoS Biol, 7, e85.  
19244238 N.P.Semenova, K.Abarca-Heidemann, E.Loranc, and B.S.Rothberg (2009).
Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels.
  J Biol Chem, 284, 10684-10693.  
19229308 P.Bjelkmar, P.S.Niemelä, I.Vattulainen, and E.Lindahl (2009).
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
  PLoS Comput Biol, 5, e1000289.  
19477632 S.Koide (2009).
Engineering of recombinant crystallization chaperones.
  Curr Opin Struct Biol, 19, 449-457.  
19260762 S.Y.Lee, A.Banerjee, and R.MacKinnon (2009).
Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels.
  PLoS Biol, 7, e47.  
19580749 X.Zhang, B.Bursulaya, C.C.Lee, B.Chen, K.Pivaroff, and T.Jegla (2009).
Divalent cations slow activation of EAG family K+ channels through direct binding to S4.
  Biophys J, 97, 110-120.  
18058826 A.Alessandrini, P.Gavazzo, C.Picco, and P.Facci (2008).
Voltage-induced morphological modifications in oocyte membranes containing exogenous K+ channels studied by electrochemical scanning force microscopy.
  Microsc Res Tech, 71, 274-278.  
18632115 A.Banerjee, and R.MacKinnon (2008).
Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
  J Mol Biol, 381, 569-580.  
  18504314 A.Lewis, V.Jogini, L.Blachowicz, M.Lainé, and B.Roux (2008).
Atomic constraints between the voltage sensor and the pore domain in a voltage-gated K+ channel of known structure.
  J Gen Physiol, 131, 549-561.  
17929154 A.Y.Kuznetsova, and R.C.Deth (2008).
A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation.
  J Comput Neurosci, 24, 314-329.  
  18923187 B.Martinac, Y.Saimi, and C.Kung (2008).
Ion channels in microbes.
  Physiol Rev, 88, 1449-1490.  
18611041 C.Kang, C.Tian, F.D.Sönnichsen, J.A.Smith, J.Meiler, A.L.George, C.G.Vanoye, H.J.Kim, and C.R.Sanders (2008).
Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
  Biochemistry, 47, 7999-8006.
PDB code: 2k21
18096645 C.Papaloukas, E.Granseth, H.Viklund, and A.Elofsson (2008).
Estimating the length of transmembrane helices using Z-coordinate predictions.
  Protein Sci, 17, 271-278.  
18614032 D.J.Posson, and P.R.Selvin (2008).
Extent of voltage sensor movement during gating of shaker K+ channels.
  Neuron, 59, 98.  
18586841 E.J.Denning, and T.B.Woolf (2008).
Double bilayers and transmembrane gradients: a molecular dynamics study of a highly charged peptide.
  Biophys J, 95, 3161-3173.  
18657562 G.B.Edgerton, K.M.Blumenthal, and D.A.Hanck (2008).
Evidence for multiple effects of ProTxII on activation gating in Na(V)1.5.
  Toxicon, 52, 489-500.  
18400182 K.A.Scott, P.J.Bond, A.Ivetac, A.P.Chetwynd, S.Khalid, and M.S.Sansom (2008).
Coarse-grained MD simulations of membrane protein-bilayer self-assembly.
  Structure, 16, 621-630.  
18287283 M.Vamvouka, J.Cieslak, N.Van Eps, W.Hubbell, and A.Gross (2008).
The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron-electron resonance spectroscopy.
  Protein Sci, 17, 506-517.  
18334215 S.Chakrapani, L.G.Cuello, D.M.Cortes, and E.Perozo (2008).
Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer.
  Structure, 16, 398-409.  
18509058 S.Y.Lee, J.A.Letts, and R.Mackinnon (2008).
Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1.
  Proc Natl Acad Sci U S A, 105, 7692-7695.  
18561309 T.E.Davies, A.O.O'Reilly, L.M.Field, B.Wallace, and M.S.Williamson (2008).
Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling.
  Pest Manag Sci, 64, 1126-1130.  
  18562501 T.J.Wilding, E.Fulling, Y.Zhou, and J.E.Huettner (2008).
Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids.
  J Gen Physiol, 132, 85-99.  
18227067 Y.Gao, C.K.Chotoo, C.M.Balut, F.Sun, M.A.Bailey, and D.C.Devor (2008).
Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1.
  J Biol Chem, 283, 9049-9059.  
18004375 A.A.Alabi, M.I.Bahamonde, H.J.Jung, J.I.Kim, and K.J.Swartz (2007).
Portability of paddle motif function and pharmacology in voltage sensors.
  Nature, 450, 370-375.  
17092528 D.A.Hanck, and M.F.Sheets (2007).
Site-3 toxins and cardiac sodium channels.
  Toxicon, 49, 181-193.  
17521566 D.L.Minor (2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
  Neuron, 54, 511-533.  
17951256 E.J.Neale, H.Rong, C.J.Cockcroft, and A.Sivaprasadarao (2007).
Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.
  J Biol Chem, 282, 37597-37604.  
  17938232 M.Milescu, J.Vobecky, S.H.Roh, S.H.Kim, H.J.Jung, J.I.Kim, and K.J.Swartz (2007).
Tarantula toxins interact with voltage sensors within lipid membranes.
  J Gen Physiol, 130, 497-511.  
  17296928 O.M.Koval, Y.Fan, and B.S.Rothberg (2007).
A role for the S0 transmembrane segment in voltage-dependent gating of BK channels.
  J Gen Physiol, 129, 209-220.  
17301243 P.J.Bond, and M.S.Sansom (2007).
Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations.
  Proc Natl Acad Sci U S A, 104, 2631-2636.  
17850745 P.L.Chiu, M.D.Pagel, J.Evans, H.T.Chou, X.Zeng, B.Gipson, H.Stahlberg, and C.M.Nimigean (2007).
The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 A resolution.
  Structure, 15, 1053-1064.  
17927448 P.P.Borbat, K.Surendhran, M.Bortolus, P.Zou, J.H.Freed, and H.S.Mchaourab (2007).
Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis.
  PLoS Biol, 5, e271.  
18004376 S.B.Long, X.Tao, E.B.Campbell, and R.MacKinnon (2007).
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
  Nature, 450, 376-382.
PDB code: 2r9r
17583356 S.Bonnet, and S.L.Archer (2007).
Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension.
  Pharmacol Ther, 115, 56-69.  
17961504 S.F.Poget, and M.E.Girvin (2007).
Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better.
  Biochim Biophys Acta, 1768, 3098-3106.  
17962407 S.Nauli, S.Farr, Y.J.Lee, H.Y.Kim, S.Faham, and J.U.Bowie (2007).
Polymer-driven crystallization.
  Protein Sci, 16, 2542-2551.
PDB codes: 2qar 2qb0 2qb1
17452106 S.Schuldiner (2007).
When biochemistry meets structural biology: the cautionary tale of EmrE.
  Trends Biochem Sci, 32, 252-258.  
17205354 S.Y.Wang, D.B.Tikhonov, B.S.Zhorov, J.Mitchell, and G.K.Wang (2007).
Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel.
  Pflugers Arch, 454, 277-287.  
17292841 Z.A.Sands, and M.S.Sansom (2007).
How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain.
  Structure, 15, 235-244.  
16828280 C.G.Tate (2006).
Comparison of three structures of the multidrug transporter EmrE.
  Curr Opin Struct Biol, 16, 457-464.  
17136096 D.Schmidt, Q.X.Jiang, and R.MacKinnon (2006).
Phospholipids and the origin of cationic gating charges in voltage sensors.
  Nature, 444, 775-779.  
16704338 F.Tombola, M.M.Pathak, and E.Y.Isacoff (2006).
How does voltage open an ion channel?
  Annu Rev Cell Dev Biol, 22, 23-52.  
17114047 G.J.Soler-Llavina, T.H.Chang, and K.J.Swartz (2006).
Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.
  Neuron, 52, 623-634.  
17012321 J.A.Freites, D.J.Tobias, and S.H.White (2006).
A voltage-sensor water pore.
  Biophys J, 91, L90-L92.  
17043236 J.Richardson, R.Blunck, P.Ge, P.R.Selvin, F.Bezanilla, D.M.Papazian, and A.M.Correa (2006).
Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.
  Proc Natl Acad Sci U S A, 103, 15865-15870.  
17159147 L.Li, D.Mustafi, Q.Fu, V.Tereshko, D.L.Chen, J.D.Tice, and R.F.Ismagilov (2006).
Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
  Proc Natl Acad Sci U S A, 103, 19243-19248.
PDB code: 2i5n
16584786 M.Oz (2006).
Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids.
  Pharmacol Ther, 111, 114-144.  
  17101817 R.B.Darman, A.A.Ivy, V.Ketty, and R.O.Blaustein (2006).
Constraints on voltage sensor movement in the shaker K+ channel.
  J Gen Physiol, 128, 687-699.  
16822664 S.J.Fleishman, and N.Ben-Tal (2006).
Progress in structure prediction of alpha-helical membrane proteins.
  Curr Opin Struct Biol, 16, 496-504.  
16648251 V.Yarov-Yarovoy, D.Baker, and W.A.Catterall (2006).
Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels.
  Proc Natl Acad Sci U S A, 103, 7292-7297.  
16269337 V.Ruta, J.Chen, and R.MacKinnon (2005).
Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel.
  Cell, 123, 463-475.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer