spacer
spacer

PDBsum entry 2z3l

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
2z3l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
229 a.a. *
Ligands
PHE-ARG-TYR-LEU-
GLY
×2
TAR ×2
Waters ×13
* Residue conservation analysis
PDB id:
2z3l
Name: Transferase
Title: Complex structure of lf-transferase and peptide a
Structure: Leucyl/phenylalanyl-tRNA-protein transferase. Chain: a, b. Synonym: aminoacyl-tRNA protein transferase, l/f-transferase, leucyltransferase, phenyalanyltransferase. Engineered: yes. Peptide (phe)(arg)(tyr)(leu)(gly). Chain: c, d. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: aat. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes. Other_details: the peptide was chemically synthesized.
Resolution:
2.75Å     R-factor:   0.207     R-free:   0.265
Authors: K.Watanabe,Y.Toh,K.Tomita
Key ref:
K.Watanabe et al. (2007). Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature, 449, 867-871. PubMed id: 17891155 DOI: 10.1038/nature06167
Date:
04-Jun-07     Release date:   23-Oct-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A8P1  (LFTR_ECOLI) -  Leucyl/phenylalanyl-tRNA--protein transferase from Escherichia coli (strain K12)
Seq:
Struc:
234 a.a.
229 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.3.2.6  - lysine/arginine leucyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. N-terminal L-lysyl-[protein] + L-leucyl-tRNA(Leu) = N-terminal L-leucyl-L-lysyl-[protein] + tRNA(Leu) + H(+)
2. N-terminal L-arginyl-[protein] + L-leucyl-tRNA(Leu) = N-terminal L-leucyl-L-arginyl-[protein] + tRNA(Leu) + H(+)
N-terminal L-lysyl-[protein]
+ L-leucyl-tRNA(Leu)
= N-terminal L-leucyl-L-lysyl-[protein]
+ tRNA(Leu)
+ H(+)
N-terminal L-arginyl-[protein]
+ L-leucyl-tRNA(Leu)
= N-terminal L-leucyl-L-arginyl-[protein]
+ tRNA(Leu)
+ H(+)
      Cofactor: Monovalent cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nature06167 Nature 449:867-871 (2007)
PubMed id: 17891155  
 
 
Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
K.Watanabe, Y.Toh, K.Suto, Y.Shimizu, N.Oka, T.Wada, K.Tomita.
 
  ABSTRACT  
 
Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.
 
  Selected figure(s)  
 
Figure 3.
Figure 3: Superposition of two binary complex structures. a, Structural difference between the complex with rA-Phe (blue) and that with the product peptide (green). b, Detailed structural difference of the Gln 188 side chains between the two structures. c, Superposition of the two complexes. The complex with rA-Phe and that with the product peptide are coloured blue and dark green, respectively. The benzyl group of rA-Phe and the Arg in the product peptide are coloured cyan and green, respectively, and are shown in stick models.
Figure 4.
Figure 4: A model of the catalytic mechanism for peptide-bond formation by LF-transferase.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2007, 449, 867-871) copyright 2007.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21325056 L.Bonnefond, T.Arai, Y.Sakaguchi, T.Suzuki, R.Ishitani, and O.Nureki (2011).
Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog.
  Proc Natl Acad Sci U S A, 108, 3912-3917.
PDB codes: 3oqh 3oqi 3oqj 3s7t
22016057 S.M.Sriram, B.Y.Kim, and Y.T.Kwon (2011).
The N-end rule pathway: emerging functions and molecular principles of substrate recognition.
  Nat Rev Mol Cell Biol, 12, 735-747.  
20956970 G.Lahoud, and Y.M.Hou (2010).
Biosynthesis: A new (old) way of hijacking tRNA.
  Nat Chem Biol, 6, 795-796.  
19903480 R.Banerjee, S.Chen, K.Dare, M.Gilreath, M.Praetorius-Ibba, M.Raina, N.M.Reynolds, T.Rogers, H.Roy, S.S.Yadavalli, and M.Ibba (2010).
tRNAs: cellular barcodes for amino acids.
  FEBS Lett, 584, 387-395.  
20729861 T.Yanagisawa, T.Sumida, R.Ishii, C.Takemoto, and S.Yokoyama (2010).
A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P.
  Nat Struct Mol Biol, 17, 1136-1143.
PDB codes: 3a5y 3a5z
19448602 H.von Döhren (2009).
Charged tRNAs charge into secondary metabolism.
  Nat Chem Biol, 5, 374-375.  
19609260 J.Kirstein, N.Molière, D.A.Dougan, and K.Turgay (2009).
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.
  Nat Rev Microbiol, 7, 589-599.  
19285947 J.Ling, B.R.So, S.S.Yadavalli, H.Roy, S.Shoji, K.Fredrick, K.Musier-Forsyth, and M.Ibba (2009).
Resampling and editing of mischarged tRNA prior to translation elongation.
  Mol Cell, 33, 654-660.  
19739192 K.Ebisu, H.Tateno, H.Kuroiwa, K.Kawakami, M.Ikeuchi, J.Hirabayashi, M.Sisido, and M.Taki (2009).
N-terminal specific point-immobilization of active proteins by the one-pot NEXT-A method.
  Chembiochem, 10, 2460-2464.  
19151092 M.Fonvielle, M.Chemama, R.Villet, M.Lecerf, A.Bouhss, J.M.Valéry, M.Ethève-Quelquejeu, and M.Arthur (2009).
Aminoacyl-tRNA recognition by the FemXWv transferase for bacterial cell wall synthesis.
  Nucleic Acids Res, 37, 1589-1601.  
19430487 M.Gondry, L.Sauguet, P.Belin, R.Thai, R.Amouroux, C.Tellier, K.Tuphile, M.Jacquet, S.Braud, M.Courçon, C.Masson, S.Dubois, S.Lautru, A.Lecoq, S.Hashimoto, R.Genet, and J.L.Pernodet (2009).
Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes.
  Nat Chem Biol, 5, 414-420.  
19440203 R.L.Ninnis, S.K.Spall, G.H.Talbo, K.N.Truscott, and D.A.Dougan (2009).
Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli.
  EMBO J, 28, 1732-1744.  
19373253 V.J.Schuenemann, S.M.Kralik, R.Albrecht, S.K.Spall, K.N.Truscott, D.A.Dougan, and K.Zeth (2009).
Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS.
  EMBO Rep, 10, 508-514.
PDB codes: 2w9r 2wa8 2wa9
19050717 A.Varshavsky (2008).
The N-end rule at atomic resolution.
  Nat Struct Mol Biol, 15, 1238-1240.  
18305156 H.Roy, and M.Ibba (2008).
RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors.
  Proc Natl Acad Sci U S A, 105, 4667-4672.  
18266307 M.Taki, H.Kuroiwa, and M.Sisido (2008).
Chemoenzymatic transfer of fluorescent non-natural amino acids to the N terminus of a protein/peptide.
  Chembiochem, 9, 719-722.  
18385375 U.L.RajBhandary, and D.Söll (2008).
Aminoacyl-tRNAs, the bacterial cell envelope, and antibiotics.
  Proc Natl Acad Sci U S A, 105, 5285-5286.  
18566452 Z.Xia, A.Webster, F.Du, K.Piatkov, M.Ghislain, and A.Varshavsky (2008).
Substrate-binding Sites of UBR1, the Ubiquitin Ligase of the N-end Rule Pathway.
  J Biol Chem, 283, 24011-24028.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer