|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
841 a.a.
|
 |
|
|
|
|
|
|
|
1090 a.a.
|
 |
|
|
|
|
|
|
|
367 a.a.
|
 |
|
|
|
|
|
|
|
260 a.a.
|
 |
|
|
|
|
|
|
|
174 a.a.
|
 |
|
|
|
|
|
|
|
90 a.a.
|
 |
|
|
|
|
|
|
|
113 a.a.
|
 |
|
|
|
|
|
|
|
74 a.a.
|
 |
|
|
|
|
|
|
|
82 a.a.
|
 |
|
|
|
|
|
|
|
91 a.a.
|
 |
|
|
|
|
|
|
|
64 a.a.
|
 |
|
|
|
|
|
|
|
43 a.a.
|
 |
|
|
|
|
|
|
|
45 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transcription
|
 |
|
Title:
|
 |
The complete structure of the archaeal 13-subunit DNA-directed RNA polymerase
|
|
Structure:
|
 |
DNA-directed RNA polymerase rpo1n subunit. Chain: a. DNA-directed RNA polymerase rpo2 subunit. Chain: b. DNA-directed RNA polymerase rpo1c subunit. Chain: c. DNA-directed RNA polymerase rpo3 subunit. Chain: d. DNA-directed RNA polymerase rpo7 subunit.
|
|
Source:
|
 |
Sulfolobus shibatae. Organism_taxid: 2286. Organism_taxid: 2286
|
|
Resolution:
|
 |
|
3.35Å
|
R-factor:
|
0.274
|
R-free:
|
0.341
|
|
|
Authors:
|
 |
Y.Korkhin,U.M.Unligil,O.Littlefield,P.J.Nelson,D.I.Stuart,P.B.Sigler, S.D.Bell,N.G.A.Abrescia
|
|
Key ref:
|
 |
Y.Korkhin
et al.
(2009).
Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
Plos Biol,
7,
e1000102.
PubMed id:
|
 |
|
Date:
|
 |
|
11-Feb-09
|
Release date:
|
19-May-09
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
B8YB53
(B8YB53_SULSH) -
DNA-directed RNA polymerase subunit Rpo1N from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
880 a.a.
841 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB55
(B8YB55_SULSH) -
DNA-directed RNA polymerase subunit Rpo2 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1128 a.a.
1090 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB54
(B8YB54_SULSH) -
DNA-directed RNA polymerase subunit Rpo1C from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
392 a.a.
367 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB56
(B8YB56_SULSH) -
DNA-directed RNA polymerase subunit Rpo3 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
265 a.a.
260 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB57
(B8YB57_SULSH) -
DNA-directed RNA polymerase subunit Rpo7 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
180 a.a.
174 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB58
(B8YB58_SULSH) -
DNA-directed RNA polymerase subunit Rpo4 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
113 a.a.
90 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB59
(B8YB59_SULSH) -
DNA-directed RNA polymerase subunit Rpo8 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
131 a.a.
113 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB60
(B8YB60_SULSH) -
DNA-directed RNA polymerase subunit Rpo5 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
84 a.a.
74 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB61
(B8YB61_SULSH) -
DNA-directed RNA polymerase subunit Rpo6 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
95 a.a.
82 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB62
(B8YB62_SULSH) -
DNA-directed RNA polymerase subunit Rpo11 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
92 a.a.
91 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
B8YB63
(B8YB63_SULSH) -
DNA-directed RNA polymerase subunit Rpo10 from Saccharolobus shibatae (strain ATCC 51178 / DSM 5389 / JCM 8931 / NBRC 15437 / B12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
66 a.a.
64 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, D, E, F, G, H, K, L, N, P, Q:
E.C.2.7.7.6
- DNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Plos Biol
7:e1000102
(2009)
|
|
PubMed id:
|
|
|
|
|
| |
|
Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
|
|
Y.Korkhin,
U.M.Unligil,
O.Littlefield,
P.J.Nelson,
D.I.Stuart,
P.B.Sigler,
S.D.Bell,
N.G.Abrescia.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The archaeal RNA polymerase (RNAP) shares structural similarities with
eukaryotic RNAP II but requires a reduced subset of general transcription
factors for promoter-dependent initiation. To deepen our knowledge of cellular
transcription, we have determined the structure of the 13-subunit DNA-directed
RNAP from Sulfolobus shibatae at 3.35 A resolution. The structure contains the
full complement of subunits, including RpoG/Rpb8 and the equivalent of the
clamp-head and jaw domains of the eukaryotic Rpb1. Furthermore, we have
identified subunit Rpo13, an RNAP component in the order Sulfolobales, which
contains a helix-turn-helix motif that interacts with the RpoH/Rpb5 and
RpoA'/Rpb1 subunits. Its location and topology suggest a role in the formation
of the transcription bubble.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.Grohmann,
D.Klose,
D.Fielden,
and
F.Werner
(2011).
FRET (fluorescence resonance energy transfer) sheds light on transcription.
|
| |
Biochem Soc Trans,
39,
122-127.
|
 |
|
|
|
|
 |
F.W.Martinez-Rucobo,
S.Sainsbury,
A.C.Cheung,
and
P.Cramer
(2011).
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
|
| |
EMBO J,
30,
1302-1310.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Werner,
and
D.Grohmann
(2011).
Evolution of multisubunit RNA polymerases in the three domains of life.
|
| |
Nat Rev Microbiol,
9,
85-98.
|
 |
|
|
|
|
 |
N.Peng,
X.Ao,
Y.X.Liang,
and
Q.She
(2011).
Archaeal promoter architecture and mechanism of gene activation.
|
| |
Biochem Soc Trans,
39,
99.
|
 |
|
|
|
|
 |
S.H.Jun,
M.J.Reichlen,
M.Tajiri,
and
K.S.Murakami
(2011).
Archaeal RNA polymerase and transcription regulation.
|
| |
Crit Rev Biochem Mol Biol,
46,
27-40.
|
 |
|
|
|
|
 |
A.Spang,
R.Hatzenpichler,
C.Brochier-Armanet,
T.Rattei,
P.Tischler,
E.Spieck,
W.Streit,
D.A.Stahl,
M.Wagner,
and
C.Schleper
(2010).
Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
|
| |
Trends Microbiol,
18,
331-340.
|
 |
|
|
|
|
 |
C.Fernández-Tornero,
B.Böttcher,
U.J.Rashid,
U.Steuerwald,
B.Flörchinger,
D.P.Devos,
D.Lindner,
and
C.W.Müller
(2010).
Conformational flexibility of RNA polymerase III during transcriptional elongation.
|
| |
EMBO J,
29,
3762-3772.
|
 |
|
|
|
|
 |
G.Ruprich-Robert,
and
P.Thuriaux
(2010).
Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases.
|
| |
Nucleic Acids Res,
38,
4559-4569.
|
 |
|
|
|
|
 |
J.Iqbal,
and
S.A.Qureshi
(2010).
Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions.
|
| |
J Bacteriol,
192,
2887-2891.
|
 |
|
|
|
|
 |
R.Carter,
and
G.Drouin
(2010).
The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors.
|
| |
Mol Biol Evol,
27,
1035-1043.
|
 |
|
|
|
|
 |
S.Grünberg,
C.Reich,
M.E.Zeller,
M.S.Bartlett,
and
M.Thomm
(2010).
Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes.
|
| |
Nucleic Acids Res,
38,
1950-1963.
|
 |
|
|
|
|
 |
S.Payankaulam,
L.M.Li,
and
D.N.Arnosti
(2010).
Transcriptional repression: conserved and evolved features.
|
| |
Curr Biol,
20,
R764-R771.
|
 |
|
|
|
|
 |
A.Hirata,
and
K.S.Murakami
(2009).
Archaeal RNA polymerase.
|
| |
Curr Opin Struct Biol,
19,
724-731.
|
 |
|
|
|
|
 |
D.Grohmann,
A.Hirtreiter,
and
F.Werner
(2009).
RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro.
|
| |
Biochem J,
421,
339-343.
|
 |
|
|
|
|
 |
F.Blombach,
K.S.Makarova,
J.Marrero,
B.Siebers,
E.V.Koonin,
and
J.van der Oost
(2009).
Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea.
|
| |
Biol Direct,
4,
39.
|
 |
|
|
|
|
 |
J.P.Daniels,
S.Kelly,
B.Wickstead,
and
K.Gull
(2009).
Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea.
|
| |
Biol Direct,
4,
24.
|
 |
|
|
|
|
 |
S.Paytubi,
and
M.F.White
(2009).
The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription.
|
| |
Mol Microbiol,
72,
1487-1499.
|
 |
|
|
|
|
 |
T.J.Santangelo,
L.Cubonová,
K.M.Skinner,
and
J.N.Reeve
(2009).
Archaeal intrinsic transcription termination in vivo.
|
| |
J Bacteriol,
191,
7102-7108.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |