spacer
spacer

PDBsum entry 2ve7

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Cell cycle PDB id
2ve7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
246 a.a. *
303 a.a. *
219 a.a. *
242 a.a. *
Ligands
GOL ×2
IPH ×2
Waters ×22
* Residue conservation analysis
PDB id:
2ve7
Name: Cell cycle
Title: Crystal structure of a bonsai version of the human ndc80 complex
Structure: Kinetochore protein hec1, kinetochore protein spc25. Chain: a, b. Fragment: chimera of ndc80 residues 80-286 with spc25 residues 118- 224. Synonym: ndc80-spc25 chimera, hshec1, kinetochore-associated protein 2, highly expressed in cancer protein, retinoblastoma-associated protein hec, hspc25. Engineered: yes. Other_details: peptide link between resi 286 and resi 1118.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.88Å     R-factor:   0.234     R-free:   0.261
Authors: C.Ciferri,S.Pasqualato,G.Dos Reis,E.Screpanti,A.Maiolica,J.Polka, J.G.De Luca,P.De Wulf,M.Salek,J.Rappsilber,C.A.Moores,E.D.Salmon, A.Musacchio
Key ref:
C.Ciferri et al. (2008). Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell, 133, 427-439. PubMed id: 18455984 DOI: 10.1016/j.cell.2008.03.020
Date:
17-Oct-07     Release date:   13-May-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O14777  (NDC80_HUMAN) -  Kinetochore protein NDC80 homolog from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
642 a.a.
246 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9HBM1  (SPC25_HUMAN) -  Kinetochore protein Spc25 from Homo sapiens
Seq:
Struc:
224 a.a.
246 a.a.*
Protein chain
Pfam   ArchSchema ?
O14777  (NDC80_HUMAN) -  Kinetochore protein NDC80 homolog from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
642 a.a.
303 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9HBM1  (SPC25_HUMAN) -  Kinetochore protein Spc25 from Homo sapiens
Seq:
Struc:
224 a.a.
303 a.a.*
Protein chain
Pfam   ArchSchema ?
Q8NBT2  (SPC24_HUMAN) -  Kinetochore protein Spc24 from Homo sapiens
Seq:
Struc:
197 a.a.
219 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9BZD4  (NUF2_HUMAN) -  Kinetochore protein Nuf2 from Homo sapiens
Seq:
Struc:
464 a.a.
219 a.a.*
Protein chain
Pfam   ArchSchema ?
Q8NBT2  (SPC24_HUMAN) -  Kinetochore protein Spc24 from Homo sapiens
Seq:
Struc:
197 a.a.
242 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9BZD4  (NUF2_HUMAN) -  Kinetochore protein Nuf2 from Homo sapiens
Seq:
Struc:
464 a.a.
242 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 692 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.cell.2008.03.020 Cell 133:427-439 (2008)
PubMed id: 18455984  
 
 
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex.
C.Ciferri, S.Pasqualato, E.Screpanti, G.Varetti, S.Santaguida, G.Dos Reis, A.Maiolica, J.Polka, J.G.De Luca, P.De Wulf, M.Salek, J.Rappsilber, C.A.Moores, E.D.Salmon, A.Musacchio.
 
  ABSTRACT  
 
Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Organization of the CH Domains in the Ndc80-Nuf2 Subcomplex
(A) Topology diagram of Ndc80 and Nuf2. The CH domain is contained between the αA and αG helices.
(B) Two views of the superposition of the CH domains of Ndc80 and Nuf2. Note the conspicuous bending of the tips of the Nuf2 αE helix.
(C) Structure-based sequence alignment of the CH domains of Ndc80, Nuf2, and EB1. The αA, αC, αE, and αG helices are contoured. Residues highlighted in gray have their side chains buried in the hydrophobic core of the CH domain.
(D) General view and closeups of the interface of Ndc80 and Nuf2.
Figure 6.
Figure 6. Models of Ndc80 and Microtubule-Kinetochore Interaction
(A–D) Models of the Ndc80-microtubule interaction. A yellow patch on tubulin in (A) and (B) represents a hypothetical binding site for the Ndc80 N-terminal tail. In (C), it is hypothesized that the N-terminal tail binds to the negatively charged patch on Nuf2, shown in Figure 4B.
(E) The Ndc80^bonsai complex.
(F) Summary of crosslinking analysis (Maiolica et al., 2007). Connected black dots mark crosslinked residues. Numbers in hexagons define distances between “milestones,” such as subsequent crosslinked residues or pairs of interacting residues identified in the structure.
(G) Model of the full-length Ndc80 complex showing the predicted break in the coiled-coil region.
(H) Implications from the structure of the Ndc80 complex on the organization of the microtubule-kinetochore interface.
 
  The above figures are reprinted by permission from Cell Press: Cell (2008, 133, 427-439) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22561346 A.Schleiffer, M.Maier, G.Litos, F.Lampert, P.Hornung, K.Mechtler, and S.Westermann (2012).
CENP-T proteins are conserved centromere receptors of the Ndc80 complex.
  Nat Cell Biol, 14, 604-613.  
22581055 D.Varma, S.Chandrasekaran, L.J.Sundin, K.T.Reidy, X.Wan, D.A.Chasse, K.R.Nevis, J.G.DeLuca, E.D.Salmon, and J.G.Cook (2012).
Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment.
  Nat Cell Biol, 14, 593-603.  
23258294 E.A.Foley, and T.M.Kapoor (2012).
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore.
  Nat Rev Mol Cell Biol, 14, 25-37.  
23085714 G.M.Alushin, V.Musinipally, D.Matson, J.Tooley, P.T.Stukenberg, and E.Nogales (2012).
Multimodal microtubule binding by the Ndc80 kinetochore complex.
  Nat Struct Mol Biol, 19, 1161-1167.  
21685892 A.M.Olszak, D.van Essen, A.J.Pereira, S.Diehl, T.Manke, H.Maiato, S.Saccani, and P.Heun (2011).
Heterochromatin boundaries are hotspots for de novo kinetochore formation.
  Nat Cell Biol, 13, 799-808.  
20951587 C.L.Asbury, J.F.Tien, and T.N.Davis (2011).
Kinetochores' gripping feat: conformational wave or biased diffusion?
  Trends Cell Biol, 21, 38-46.  
21633384 F.Lampert, and S.Westermann (2011).
A blueprint for kinetochores - new insights into the molecular mechanics of cell division.
  Nat Rev Mol Cell Biol, 12, 407-412.  
21424324 H.Zhang, and R.K.Dawe (2011).
Mechanisms of plant spindle formation.
  Chromosome Res, 19, 335-344.  
21300272 J.C.Schmidt, and I.M.Cheeseman (2011).
Chromosome segregation: keeping kinetochores in the loop.
  Curr Biol, 21, R110-R112.  
21256019 J.F.Maure, S.Komoto, Y.Oku, A.Mino, S.Pasqualato, K.Natsume, L.Clayton, A.Musacchio, and T.U.Tanaka (2011).
The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end.
  Curr Biol, 21, 207-213.  
21311965 J.Tooley, and P.T.Stukenberg (2011).
The Ndc80 complex: integrating the kinetochore's many movements.
  Chromosome Res, 19, 377-391.  
21529714 K.E.Gascoigne, K.Takeuchi, A.Suzuki, T.Hori, T.Fukagawa, and I.M.Cheeseman (2011).
Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes.
  Cell, 145, 410-422.  
21256022 K.S.Hsu, and T.Toda (2011).
Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast.
  Curr Biol, 21, 214-220.  
21106376 M.A.Lampson, and I.M.Cheeseman (2011).
Sensing centromere tension: Aurora B and the regulation of kinetochore function.
  Trends Cell Biol, 21, 133-140.  
21282620 P.O.Widlund, J.H.Stear, A.Pozniakovsky, M.Zanic, S.Reber, G.J.Brouhard, A.A.Hyman, and J.Howard (2011).
XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.
  Proc Natl Acad Sci U S A, 108, 2741-2746.  
21143992 A.K.Caydasi, B.Ibrahim, and G.Pereira (2010).
Monitoring spindle orientation: Spindle position checkpoint in charge.
  Cell Div, 5, 28.  
20360032 A.Leitner, T.Walzthoeni, A.Kahraman, F.Herzog, O.Rinner, M.Beck, and R.Aebersold (2010).
Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics.
  Mol Cell Proteomics, 9, 1634-1649.  
20130675 A.P.Carter, and R.D.Vale (2010).
Communication between the AAA+ ring and microtubule-binding domain of dynein.
  Biochem Cell Biol, 88, 15-21.  
20819937 A.Petrovic, S.Pasqualato, P.Dube, V.Krenn, S.Santaguida, D.Cittaro, S.Monzani, L.Massimiliano, J.Keller, A.Tarricone, A.Maiolica, H.Stark, and A.Musacchio (2010).
The MIS12 complex is a protein interaction hub for outer kinetochore assembly.
  J Cell Biol, 190, 835-852.  
20154706 A.R.Cole, L.P.Lewis, and H.Walden (2010).
The structure of the catalytic subunit FANCL of the Fanconi anemia core complex.
  Nat Struct Mol Biol, 17, 294-298.
PDB code: 3k1l
20336345 B.F.McEwen, and Y.Dong (2010).
Contrasting models for kinetochore microtubule attachment in mammalian cells.
  Cell Mol Life Sci, 67, 2163-2172.  
  20935472 C.Rumpf, L.Cipak, A.Schleiffer, A.Pidoux, K.Mechtler, I.M.Tolić-Nørrelykke, and J.Gregan (2010).
Laser microsurgery provides evidence for merotelic kinetochore attachments in fission yeast cells lacking Pcs1 or Clr4.
  Cell Cycle, 9, 3997-4004.  
20231380 D.Liu, M.Vleugel, C.B.Backer, T.Hori, T.Fukagawa, I.M.Cheeseman, and M.A.Lampson (2010).
Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase.
  J Cell Biol, 188, 809-820.  
20819936 D.P.Maskell, X.W.Hu, and M.R.Singleton (2010).
Molecular architecture and assembly of the yeast kinetochore MIND complex.
  J Cell Biol, 190, 823-834.  
20657644 E.Screpanti, S.Santaguida, T.Nguyen, R.Silvestri, R.Gussio, A.Musacchio, E.Hamel, and P.De Wulf (2010).
A screen for kinetochore-microtubule interaction inhibitors identifies novel antitubulin compounds.
  PLoS One, 5, e11603.  
20479465 F.Lampert, P.Hornung, and S.Westermann (2010).
The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex.
  J Cell Biol, 189, 641-649.  
20221784 G.Civelekoglu-Scholey, and J.M.Scholey (2010).
Mitotic force generators and chromosome segregation.
  Cell Mol Life Sci, 67, 2231-2250.  
20232224 G.J.Kops, A.T.Saurin, and P.Meraldi (2010).
Finding the middle ground: how kinetochores power chromosome congression.
  Cell Mol Life Sci, 67, 2145-2161.  
20944740 G.M.Alushin, V.H.Ramey, S.Pasqualato, D.A.Ball, N.Grigorieff, A.Musacchio, and E.Nogales (2010).
The Ndc80 kinetochore complex forms oligomeric arrays along microtubules.
  Nature, 467, 805-810.
PDB code: 3iz0
20805893 H.Foussard, P.Ferrer, P.Valenti, C.Polesello, S.Carreno, and F.Payre (2010).
LRCH proteins: a novel family of cytoskeletal regulators.
  PLoS One, 5, e12257.  
20306325 H.Maiato, and M.Lince-Faria (2010).
The perpetual movements of anaphase.
  Cell Mol Life Sci, 67, 2251-2269.  
20471944 J.P.Welburn, M.Vleugel, D.Liu, J.R.Yates, M.A.Lampson, T.Fukagawa, and I.M.Cheeseman (2010).
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface.
  Mol Cell, 38, 383-392.  
19836959 J.Zich, and K.G.Hardwick (2010).
Getting down to the phosphorylated 'nuts and bolts' of spindle checkpoint signalling.
  Trends Biochem Sci, 35, 18-27.  
20723757 K.D.Corbett, C.K.Yip, L.S.Ee, T.Walz, A.Amon, and S.C.Harrison (2010).
The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments.
  Cell, 142, 556-567.
PDB codes: 3n4r 3n4s 3n4x 3n7n
21172631 L.J.Sundin, and J.G.Deluca (2010).
Kinetochores: NDC80 toes the line.
  Curr Biol, 20, R1083-R1085.  
20624901 S.Santaguida, A.Tighe, A.M.D'Alise, S.S.Taylor, and A.Musacchio (2010).
Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine.
  J Cell Biol, 190, 73-87.  
21102558 T.U.Tanaka (2010).
Kinetochore-microtubule interactions: steps towards bi-orientation.
  EMBO J, 29, 4070-4082.  
20889715 Y.Tanno, T.S.Kitajima, T.Honda, Y.Ando, K.Ishiguro, and Y.Watanabe (2010).
Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres.
  Genes Dev, 24, 2169-2179.  
20094031 Z.A.Chen, A.Jawhari, L.Fischer, C.Buchen, S.Tahir, T.Kamenski, M.Rasmussen, L.Lariviere, J.C.Bukowski-Wills, M.Nilges, P.Cramer, and J.Rappsilber (2010).
Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry.
  EMBO J, 29, 717-726.  
19269365 A.F.Powers, A.D.Franck, D.R.Gestaut, J.Cooper, B.Gracyzk, R.R.Wei, L.Wordeman, T.N.Davis, and C.L.Asbury (2009).
The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion.
  Cell, 136, 865-875.  
19467206 A.P.Joglekar, and J.G.DeLuca (2009).
Chromosome segregation: Ndc80 can carry the load.
  Curr Biol, 19, R404-R407.  
19345105 A.P.Joglekar, K.Bloom, and E.D.Salmon (2009).
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy.
  Curr Biol, 19, 694-699.  
19714251 A.Samoshkin, A.Arnaoutov, L.E.Jansen, I.Ouspenski, L.Dye, T.Karpova, J.McNally, M.Dasso, D.W.Cleveland, and A.Strunnikov (2009).
Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation.
  PLoS One, 4, e6831.  
19822728 B.Akiyoshi, C.R.Nelson, J.A.Ranish, and S.Biggins (2009).
Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae.
  Genetics, 183, 1591-1595.  
19150808 D.Liu, G.Vader, M.J.Vromans, M.A.Lampson, and S.M.Lens (2009).
Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates.
  Science, 323, 1350-1353.  
19684577 E.Kiermaier, S.Woehrer, Y.Peng, K.Mechtler, and S.Westermann (2009).
A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast.
  Nat Cell Biol, 11, 1109-1115.  
19494039 F.Hans, D.A.Skoufias, S.Dimitrov, and R.L.Margolis (2009).
Molecular distinctions between Aurora A and B: a single residue change transforms Aurora A into correctly localized and functional Aurora B.
  Mol Biol Cell, 20, 3491-3502.  
19776357 G.Wu, R.Wei, E.Cheng, B.Ngo, and W.H.Lee (2009).
Hec1 contributes to mitotic centrosomal microtubule growth for proper spindle assembly through interaction with Hice1.
  Mol Biol Cell, 20, 4686-4695.  
19289083 J.P.Welburn, E.L.Grishchuk, C.B.Backer, E.M.Wilson-Kubalek, J.R.Yates, and I.M.Cheeseman (2009).
The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility.
  Dev Cell, 16, 374-385.  
19432891 K.Tanaka, and T.Hirota (2009).
Chromosome segregation machinery and cancer.
  Cancer Sci, 100, 1158-1165.  
19886809 M.R.Przewloka, and D.M.Glover (2009).
The kinetochore and the centromere: a working long distance relationship.
  Annu Rev Genet, 43, 439-465.  
19590494 R.B.Schittenhelm, R.Chaleckis, and C.F.Lehner (2009).
Intrakinetochore localization and essential functional domains of Drosophila Spc105.
  EMBO J, 28, 2374-2386.  
19565362 R.H.Wade (2009).
On and around microtubules: an overview.
  Mol Biotechnol, 43, 177-191.  
19300438 S.Kemmler, M.Stach, M.Knapp, J.Ortiz, J.Pfannstiel, T.Ruppert, and J.Lechner (2009).
Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling.
  EMBO J, 28, 1099-1110.  
19381461 S.Qiu, J.Wang, C.Yu, and D.He (2009).
CENP-K and CENP-H may form coiled-coils in the kinetochores.
  Sci China C Life Sci, 52, 352-359.  
19629042 S.Santaguida, and A.Musacchio (2009).
The life and miracles of kinetochores.
  EMBO J, 28, 2511-2531.  
19360002 T.N.Gaitanos, A.Santamaria, A.A.Jeyaprakash, B.Wang, E.Conti, and E.A.Nigg (2009).
Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3.
  EMBO J, 28, 1442-1452.  
19667128 T.Zimniak, K.Stengl, K.Mechtler, and S.Westermann (2009).
Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p.
  J Cell Biol, 186, 379-391.  
19450515 X.Wan, R.P.O'Quinn, H.L.Pierce, A.P.Joglekar, W.E.Gall, J.G.DeLuca, C.W.Carroll, S.T.Liu, T.J.Yen, B.F.McEwen, P.T.Stukenberg, A.Desai, and E.D.Salmon (2009).
Protein architecture of the human kinetochore microtubule attachment site.
  Cell, 137, 672-684.  
18952167 B.Sjöblom, J.Ylänne, and K.Djinović-Carugo (2008).
Novel structural insights into F-actin-binding and novel functions of calponin homology domains.
  Curr Opin Struct Biol, 18, 702-708.  
18547515 C.L.Asbury, and T.N.Davis (2008).
Insights into the kinetochore.
  Structure, 16, 834-836.  
18794333 E.M.Wilson-Kubalek, I.M.Cheeseman, C.Yoshioka, A.Desai, and R.A.Milligan (2008).
Orientation and structure of the Ndc80 complex on the microtubule lattice.
  J Cell Biol, 182, 1055-1061.  
18765786 F.Civril, and A.Musacchio (2008).
Spindly attachments.
  Genes Dev, 22, 2302-2307.  
19026543 G.J.Guimaraes, Y.Dong, B.F.McEwen, and J.G.Deluca (2008).
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1.
  Curr Biol, 18, 1778-1784.  
18670445 I.Vernos, and J.M.Peters (2008).
Twenty years of cell-cycle conferences in Roscoff.
  Nat Cell Biol, 10, 877-880.  
19081042 S.Cai, and C.E.Walczak (2008).
Kinetochore attachment: how the hec can a cell do it?
  Curr Biol, 18, R1093-R1096.  
18677502 T.U.Tanaka (2008).
Bi-orienting chromosomes: acrobatics on the mitotic spindle.
  Chromosoma, 117, 521-533.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer