spacer
spacer

PDBsum entry 2ozb

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
RNA binding protein/RNA PDB id
2ozb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
126 a.a. *
239 a.a. *
DNA/RNA
Metals
_CA ×3
Waters ×239
* Residue conservation analysis
PDB id:
2ozb
Name: RNA binding protein/RNA
Title: Structure of a human prp31-15.5k-u4 snrna complex
Structure: RNA comprising the 5' stem-loop RNA of u4snrna. Chain: c, f. Fragment: u4 5'-sl, residues 20-52. Engineered: yes. U4/u6.U5 tri-snrnp 15.5 kda protein. Chain: a, d. Synonym: high mobility group-like nuclear protein 2 homolog 1, nhp2- like protein 1, otk27, hsnu13. Engineered: yes.
Source: Synthetic: yes. Other_details: RNA was chemically synthesized according to gene rnu4a (residues 20-52). Homo sapiens. Human. Organism_taxid: 9606. Strain: hela cells. Gene: nhp2l1. Expressed in: escherichia coli bl21(de3).
Resolution:
2.60Å     R-factor:   0.208     R-free:   0.248
Authors: S.Liu,R.Luehrmann,M.C.Wahl
Key ref:
S.Liu et al. (2007). Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science, 316, 115-120. PubMed id: 17412961 DOI: 10.1126/science.1137924
Date:
26-Feb-07     Release date:   20-Mar-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P55769  (NH2L1_HUMAN) -  NHP2-like protein 1 from Homo sapiens
Seq:
Struc:
128 a.a.
126 a.a.
Protein chains
Pfam   ArchSchema ?
Q8WWY3  (PRP31_HUMAN) -  U4/U6 small nuclear ribonucleoprotein Prp31 from Homo sapiens
Seq:
Struc:
499 a.a.
239 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  A-U-C-G-U-A-G-C-C-A-A-U-G-A-G-G-U-U-U-A-U-C-C-G-A-G-G-C-G-C-G-A-U 33 bases
  A-U-C-G-U-A-G-C-C-A-A-U-G-A-G-G-U-U-U-A-U-C-C-G-A-G-G-C-G-C-G-A-U 33 bases

 Enzyme reactions 
   Enzyme class: Chains A, B, D, E: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1126/science.1137924 Science 316:115-120 (2007)
PubMed id: 17412961  
 
 
Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP.
S.Liu, P.Li, O.Dybkov, S.Nottrott, K.Hartmuth, R.Lührmann, T.Carlomagno, M.C.Wahl.
 
  ABSTRACT  
 
Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. (A) Schematics of the 5'-SLs of U4 snRNA (left), U4atac snRNA (middle), and the K-turn region of box C/D snoRNAs (right). N indicates any nucleotide; R, purine. Binding of 15.5K and the secondary binding proteins is indicated. Stem II of the K turn in the box C/D snoRNAs is longer by one base pair (20), and a single additional base pair in stem II is known to interfere with hPrp31 binding (21). Box C/D snoRNPs act as sequence-specific 2'-O methyltransferases, which posttranscriptionally modify several functional RNAs. (B)(Left) ^1H-^15N heteronuclear singlequantum coherence spectra of 15.5K in the binary 15.5K–U4 5'-SL complex (black) and in the ternary complex containing full-length hPrp31 (red). Assignments of selected resonances are indicated. ppm, parts per million. (Middle) Mapping of NMR chemical shift changes elicited by the addition of hPrp31 on the structure of the 15.5K-RNA complex [coordinates from (12); PDB ID 1E7K]. Dashed line is the disordered pentaloop of the RNA; 15.5K, light gray; and RNA, dark gray. All structure figures were prepared with PyMOL (34). (Right) Mapping of saturation transfer from hPrp31 to RNA-bound 15.5K, indicating residues of 15.5K that are directly contacted by hPrp31. Apparent contacts to the central ß sheet of 15.5K arise from spin diffusion. Degrees of chemical shift changes and saturation transfer are color-coded: red, strong; orange, intermediate; and yellow, weak. A similar picture is obtained when mapping the contacts of hPrp31^78-333 on 15.5K in the framework of the 15.5K–U4 5'-SL complex (SOM text), confirming that the hPrp31^78-333 fragment interacts with 15.5K in the same way as the full-length protein.
Figure 2.
Fig. 2. (A) Overview of the hPrp31^78-333–15.5K–U4 5'-SL complex (left). hPrp31^78-333, blue; 15.5K, red; RNA, gold. RNA elements not seen in the binary 15.5K–22-mer RNA complex with a shorter stem I [right (12); PDB ID 1E7K] are in green. Positions A194 and A216, at which missense mutations have been linked to the RP11 form of retinitis pigmentosa, are shown as space-filling models and colored cyan. Dashed line in hPrp31^78-333, disordered loop. Dashed line in the binary complex, unstructured pentaloop. Although induced-fit interactions are the hallmark of most RNA-protein complexes (32), the structuring of the RNA pentaloop upon hPrp31^78-333 binding observed here is particularly pronounced. The crystal structure contains two crystallographically independent ternary complexes per asymmetric unit that are largely identical (table S2). (B) Close-up views of the complex from the back (left) and from the bottom (right). Main contact regions between hPrp31^78-333 and 15.5K and between hPrp31^78-333 and the RNA are indicated by connecting lines and are labeled by letters and numbers, respectively. Regions of the RNA are color-coded: distal portion of stem I, gray; K-turn region, gold; distal portion of stem II, brown; and pentaloop, beige. The bulged-out U31 denotes the tip of the K turn and is shown in sticks.
 
  The above figures are reprinted by permission from the AAAs: Science (2007, 316, 115-120) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21474760 H.He, S.Liyanarachchi, K.Akagi, R.Nagy, J.Li, R.C.Dietrich, W.Li, N.Sebastian, B.Wen, B.Xin, J.Singh, P.Yan, H.Alder, E.Haan, D.Wieczorek, B.Albrecht, E.Puffenberger, H.Wang, J.A.Westman, R.A.Padgett, D.E.Symer, and A.de la Chapelle (2011).
Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I.
  Science, 332, 238-240.  
21474761 P.Edery, C.Marcaillou, M.Sahbatou, A.Labalme, J.Chastang, R.Touraine, E.Tubacher, F.Senni, M.B.Bober, S.Nampoothiri, P.S.Jouk, E.Steichen, S.Berland, A.Toutain, C.A.Wise, D.Sanlaville, F.Rousseau, F.Clerget-Darpoux, and A.L.Leutenegger (2011).
Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA.
  Science, 332, 240-243.  
20421206 E.Kühn-Hölsken, C.Lenz, A.Dickmanns, H.H.Hsiao, F.M.Richter, B.Kastner, R.Ficner, and H.Urlaub (2010).
Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry.
  Nucleic Acids Res, 38, 5581-5593.  
20572804 F.Bleichert, and S.J.Baserga (2010).
Ribonucleoprotein multimers and their functions.
  Crit Rev Biochem Mol Biol, 45, 331-350.  
19926724 K.T.Gagnon, X.Zhang, G.Qu, S.Biswas, J.Suryadi, B.A.Brown, and E.S.Maxwell (2010).
Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif.
  RNA, 16, 79-90.  
20466811 M.Falb, I.Amata, F.Gabel, B.Simon, and T.Carlomagno (2010).
Structure of the K-turn U4 RNA: a combined NMR and SANS study.
  Nucleic Acids Res, 38, 6274-6285.
PDB code: 2xeb
20007600 M.Lützelberger, C.A.Bottner, W.Schwelnus, S.Zock-Emmenthal, A.Razanau, and N.F.Käufer (2010).
The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo.
  Nucleic Acids Res, 38, 1610-1622.  
20118938 M.Schneider, H.H.Hsiao, C.L.Will, R.Giet, H.Urlaub, and R.Lührmann (2010).
Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation.
  Nat Struct Mol Biol, 17, 216-221.  
19745151 F.Bleichert, K.T.Gagnon, B.A.Brown, E.S.Maxwell, A.E.Leschziner, V.M.Unger, and S.J.Baserga (2009).
A dimeric structure for archaeal box C/D small ribonucleoproteins.
  Science, 325, 1384-1387.  
19308925 J.P.Kirkpatrick, P.Li, and T.Carlomagno (2009).
Probing mutation-induced structural perturbations by refinement against residual dipolar couplings: application to the U4 spliceosomal RNP complex.
  Chembiochem, 10, 1007-1014.  
19167202 J.P.Staley, and J.L.Woolford (2009).
Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines.
  Curr Opin Cell Biol, 21, 109-118.  
19336398 J.W.Hardin, F.E.Reyes, and R.T.Batey (2009).
Analysis of a critical interaction within the archaeal box C/D small ribonucleoprotein complex.
  J Biol Chem, 284, 15317-15324.
PDB codes: 3gqu 3gqx
19666563 K.Ye, R.Jia, J.Lin, M.Ju, J.Peng, A.Xu, and L.Zhang (2009).
Structural organization of box C/D RNA-guided RNA methyltransferase.
  Proc Natl Acad Sci U S A, 106, 13808-13813.
PDB codes: 3icx 3id5 3id6
19239890 M.C.Wahl, C.L.Will, and R.Lührmann (2009).
The spliceosome: design principles of a dynamic RNP machine.
  Cell, 136, 701-718.  
19293337 M.Huranová, J.Hnilicová, B.Fleischer, Z.Cvacková, and D.Stanek (2009).
A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs.
  Hum Mol Genet, 18, 2014-2023.  
19716790 V.Pena, S.M.Jovin, P.Fabrizio, J.Orlowski, J.M.Bujnicki, R.Lührmann, and M.C.Wahl (2009).
Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase.
  Mol Cell, 35, 454-466.
PDB codes: 3im1 3im2
18953335 I.Häcker, B.Sander, M.M.Golas, E.Wolf, E.Karagöz, B.Kastner, H.Stark, P.Fabrizio, and R.Lührmann (2008).
Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy.
  Nat Struct Mol Biol, 15, 1206-1212.  
18550358 M.S.Jurica (2008).
Detailed close-ups and the big picture of spliceosomes.
  Curr Opin Struct Biol, 18, 315-320.  
  18334927 R.Schmidt-Kastner, H.Yamamoto, D.Hamasaki, H.Yamamoto, J.M.Parel, C.Schmitz, C.K.Dorey, J.C.Blanks, and M.N.Preising (2008).
Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa.
  Mol Vis, 14, 125-135.  
18268104 S.Boulon, N.Marmier-Gourrier, B.Pradet-Balade, L.Wurth, C.Verheggen, B.E.Jády, B.Rothé, C.Pescia, M.C.Robert, T.Kiss, B.Bardoni, A.Krol, C.Branlant, C.Allmang, E.Bertrand, and B.Charpentier (2008).
The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery.
  J Cell Biol, 180, 579-595.  
18317597 T.Rio Frio, N.M.Wade, A.Ransijn, E.L.Berson, J.S.Beckmann, and C.Rivolta (2008).
Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay.
  J Clin Invest, 118, 1519-1531.  
19111659 X.Luo, H.H.Hsiao, M.Bubunenko, G.Weber, D.L.Court, M.E.Gottesman, H.Urlaub, and M.C.Wahl (2008).
Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex.
  Mol Cell, 32, 791-802.
PDB codes: 3d3b 3d3c
17652325 E.Kühn-Hölsken, O.Dybkov, B.Sander, R.Lührmann, and H.Urlaub (2007).
Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry.
  Nucleic Acids Res, 35, e95.  
17893323 R.T.Tsai, C.K.Tseng, P.J.Lee, H.C.Chen, R.H.Fu, K.J.Chang, F.L.Yeh, and S.C.Cheng (2007).
Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly.
  Mol Cell Biol, 27, 8027-8037.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer