spacer
spacer

PDBsum entry 2nod

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
2nod

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
414 a.a. *
Ligands
SO4
HEM ×2
H4B ×2
Waters ×324
* Residue conservation analysis
PDB id:
2nod
Name: Oxidoreductase
Title: Murine inducible nitric oxide synthase oxygenase dimer (delta 65) with tetrahydrobiopterin and water bound in active center
Structure: Nitric oxide synthase. Chain: a, b. Fragment: oxygenase domain 65-498. Engineered: yes. Other_details: murine inducible
Source: Mus musculus. House mouse. Organism_taxid: 10090. Cell: macrophage. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.60Å     R-factor:   0.224     R-free:   0.289
Authors: B.R.Crane,A.S.Arvai,E.D.Getzoff,D.J.Stuehr,J.A.Tainer
Key ref:
B.R.Crane et al. (1998). Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science, 279, 2121-2126. PubMed id: 9516116 DOI: 10.1126/science.279.5359.2121
Date:
05-Mar-98     Release date:   23-Mar-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P29477  (NOS2_MOUSE) -  Nitric oxide synthase, inducible from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1144 a.a.
414 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.14.13.39  - nitric-oxide synthase (NADPH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 L-arginine + 3 NADPH + 4 O2 + H+ = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O
2 × L-arginine
+ 3 × NADPH
+ 4 × O2
+ H(+)
= 2 × L-citrulline
+ 2 × nitric oxide
+ 3 × NADP(+)
+ 4 × H2O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.279.5359.2121 Science 279:2121-2126 (1998)
PubMed id: 9516116  
 
 
Structure of nitric oxide synthase oxygenase dimer with pterin and substrate.
B.R.Crane, A.S.Arvai, D.K.Ghosh, C.Wu, E.D.Getzoff, D.J.Stuehr, J.A.Tainer.
 
  ABSTRACT  
 
Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. NOS[ox] - fold, dimer assembly, and likely interaction surface for NOS[red] and caveolin. (A) The symmetric iNOS[ox] dimer viewed along the crystallographic twofold axis, showing left (and^ right) subunits with orange (yellow) winged sheets and flanking blue (cyan) helices. Ball-and-stick models (white bonds with red^ oxygen, blue nitrogen, yellow sulfur, and purple iron atoms) highlight active-center hemes (left-most and right-most), interchain disulfide^ bonds (center, foreground), pterin cofactors (white, left-center and right-center), and substrate L-Arg (green left and magenta^ right). The NH[2]-terminal ends contribute hairpins (center top and bottom) to the dimer interface, and the COOH-termini (lower left and upper right) lie 85 Å apart. Gray loops (residues 101^ to 107) are disordered. (B) iNOS[ox] dimer shown rotated^ 90° about a horizontal axis from (A). Each heme is cupped between the inward-facing palm (webbed sheet) and thumb (magenta loop in front of left heme and green loop behind right heme) of the^ "catcher's mitt" subunit fold. (C) Solvent-accessible surface^ (29) of the iNOS[ox] dimer (one subunit red, one subunit blue) oriented as in (B) and color-coded by residue conservation (paler to more saturated represents less conserved to more conserved) in NOS[ox] sequences of known species and isozymes. The heme (white^ tubes) is also solvent-exposed on the side (left subunit) opposite^ the active-center channel (right subunit) and surrounded by a^ highly conserved hydrophobic surface for NOS[red] and caveolin binding. (Stereo variations of Figs.
Figure 5.
Fig. 5. Proposed L-Arg-assisted NOS oxygen activation. First, substrate L-Arg (only guanidinium shown) donates a proton to peroxo-iron, facilitating O-O bond cleavage and conversion to a proposed oxo-iron(IV) -cation radical species, which then rapidly hydroxylates the^ neutral guanidinium to NOH-L-Arg, possibly through a radical-based^ mechanism (3).
 
  The above figures are reprinted by permission from the AAAs: Science (1998, 279, 2121-2126) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21482467 R.J.Young, W.Alderton, A.D.Angell, P.J.Beswick, D.Brown, C.L.Chambers, M.C.Crowe, J.Dawson, C.C.Hamlett, S.T.Hodgson, S.Kleanthous, R.G.Knowles, L.J.Russell, R.Stocker, and J.M.Woolven (2011).
Heteroalicyclic carboxamidines as inhibitors of inducible nitric oxide synthase; the identification of (2R)-2-pyrrolidinecarboxamidine as a potent and selective haem-co-ordinating inhibitor.
  Bioorg Med Chem Lett, 21, 3037-3040.  
20840589 A.Maréchal, T.A.Mattioli, D.J.Stuehr, and J.Santolini (2010).
NO synthase isoforms specifically modify peroxynitrite reactivity.
  FEBS J, 277, 3963-3973.  
20718865 A.Welland, and S.Daff (2010).
Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
  FEBS J, 277, 3833-3843.  
20370423 B.R.Crane, J.Sudhamsu, and B.A.Patel (2010).
Bacterial nitric oxide synthases.
  Annu Rev Biochem, 79, 445-470.  
19951943 C.Giroud, M.Moreau, T.A.Mattioli, V.Balland, J.L.Boucher, Y.Xu-Li, D.J.Stuehr, and J.Santolini (2010).
Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation.
  J Biol Chem, 285, 7233-7245.  
20226211 D.Schade, J.Kotthaus, and B.Clement (2010).
Modulating the NO generating system from a medicinal chemistry perspective: current trends and therapeutic options in cardiovascular disease.
  Pharmacol Ther, 126, 279-300.  
20184449 F.V.Fonseca, K.Ravi, D.Wiseman, M.Tummala, C.Harmon, V.Ryzhov, J.R.Fineman, and S.M.Black (2010).
Mass spectroscopy and molecular modeling predict endothelial nitric oxide synthase dimer collapse by hydrogen peroxide through zinc tetrathiolate metal-binding site disruption.
  DNA Cell Biol, 29, 149-160.  
20014790 J.D.Martell, H.Li, T.Doukov, P.Martásek, L.J.Roman, M.Soltis, T.L.Poulos, and R.B.Silverman (2010).
Heme-coordinating inhibitors of neuronal nitric oxide synthase. Iron-thioether coordination is stabilized by hydrophobic contacts without increased inhibitor potency.
  J Am Chem Soc, 132, 798-806.
PDB codes: 3jt3 3jt4 3jt5 3jt6 3jt7 3jt8 3jt9 3jta
20950274 J.Tejero, A.Biswas, M.M.Haque, Z.Q.Wang, C.Hemann, C.L.Varnado, Z.Novince, R.Hille, D.C.Goodwin, and D.J.Stuehr (2010).
Mesohaem substitution reveals how haem electronic properties can influence the kinetic and catalytic parameters of neuronal NO synthase.
  Biochem J, 433, 163-174.  
20306272 U.Förstermann (2010).
Nitric oxide and oxidative stress in vascular disease.
  Pflugers Arch, 459, 923-939.  
20184376 W.Chen, L.J.Druhan, C.A.Chen, C.Hemann, Y.R.Chen, V.Berka, A.L.Tsai, and J.L.Zweier (2010).
Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition.
  Biochemistry, 49, 3129-3137.  
18715148 A.B.Knott, and E.Bossy-Wetzel (2009).
Nitric oxide in health and disease of the nervous system.
  Antioxid Redox Signal, 11, 541-554.  
19081984 B.L.Oliveira, J.D.Correia, P.D.Raposinho, I.Santos, A.Ferreira, C.Cordeiro, and A.P.Freire (2009).
Re and (99m)Tc organometallic complexes containing pendant l-arginine derivatives as potential probes of inducible nitric oxide synthase.
  Dalton Trans, (), 152-162.  
19690675 C.Feng, and G.Tollin (2009).
Regulation of interdomain electron transfer in the NOS output state for NO production.
  Dalton Trans, (), 6692-6700.  
19602444 C.N.Hall, and J.Garthwaite (2009).
What is the real physiological NO concentration in vivo?
  Nitric Oxide, 21, 92.  
19737939 C.Xia, I.Misra, T.Iyanagi, and J.J.Kim (2009).
Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase.
  J Biol Chem, 284, 30708-30717.  
19583767 D.J.Stuehr, J.Tejero, and M.M.Haque (2009).
Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
  FEBS J, 276, 3959-3974.  
19063897 D.S.Shin, M.Didonato, D.P.Barondeau, G.L.Hura, C.Hitomi, J.A.Berglund, E.D.Getzoff, S.C.Cary, and J.A.Tainer (2009).
Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis.
  J Mol Biol, 385, 1534-1555.
PDB codes: 3f7k 3f7l
19415662 F.Ma, G.Lü, W.F.Zhou, Q.J.Wang, Y.H.Zhang, and Q.Z.Yao (2009).
Synthesis and biological activities of 2,4-diaminopteridine derivatives.
  Arch Pharm (Weinheim), 342, 274-280.  
19125620 H.Ji, H.Li, P.Martásek, L.J.Roman, T.L.Poulos, and R.B.Silverman (2009).
Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping.
  J Med Chem, 52, 779-797.  
19146393 H.Ouellet, J.Lang, M.Couture, and P.R.Ortiz de Montellano (2009).
Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide.
  Biochemistry, 48, 863-872.  
19658411 J.Sabat, D.J.Stuehr, S.R.Yeh, and D.L.Rousseau (2009).
Characterization of the proximal ligand in the P420 form of inducible nitric oxide synthase.
  J Am Chem Soc, 131, 12186-12192.  
19358819 P.F.Chen, and K.K.Wu (2009).
Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM.
  Arch Biochem Biophys, 486, 132-140.  
19290671 R.P.Ilagan, J.Tejero, K.S.Aulak, S.S.Ray, C.Hemann, Z.Q.Wang, M.Gangoda, J.L.Zweier, and D.J.Stuehr (2009).
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
  Biochemistry, 48, 3864-3876.  
19046139 S.Messner, S.Leitner, C.Bommassar, G.Golderer, P.Gröbner, E.R.Werner, and G.Werner-Felmayer (2009).
Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins.
  Biochem J, 418, 691-700.  
19805284 T.Agapie, S.Suseno, J.J.Woodward, S.Stoll, R.D.Britt, and M.A.Marletta (2009).
NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
  Proc Natl Acad Sci U S A, 106, 16221-16226.  
19632105 W.C.Koh, E.S.Choe, D.K.Lee, S.C.Chang, and Y.B.Shim (2009).
Monitoring the activation of neuronal nitric oxide synthase in brain tissue and cells with a potentiometric immunosensor.
  Biosens Bioelectron, 25, 211-217.  
19759857 C.A.Whited, W.Belliston-Bittner, A.R.Dunn, J.R.Winkler, and H.B.Gray (2008).
Probing the heme-thiolate oxygenase domain of inducible nitric oxide synthase with Ru(II) and Re(I) electron tunneling wires.
  J Porphyr Phthalocyanines, 12, 971-978.  
18283102 C.C.Wei, Z.Q.Wang, J.Tejero, Y.P.Yang, C.Hemann, R.Hille, and D.J.Stuehr (2008).
Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase.
  J Biol Chem, 283, 11734-11742.  
  18085539 E.C.Glazer, Y.H.Nguyen, H.B.Gray, and D.B.Goodin (2008).
Probing inducible nitric oxide synthase with a pterin-ruthenium(II) sensitizer wire.
  Angew Chem Int Ed Engl, 47, 898-901.  
18849972 E.D.Garcin, A.S.Arvai, R.J.Rosenfeld, M.D.Kroeger, B.R.Crane, G.Andersson, G.Andrews, P.J.Hamley, P.R.Mallinder, D.J.Nicholls, S.A.St-Gallay, A.C.Tinker, N.P.Gensmantel, A.Mete, D.R.Cheshire, S.Connolly, D.J.Stuehr, A.Aberg, A.V.Wallace, J.A.Tainer, and E.D.Getzoff (2008).
Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase.
  Nat Chem Biol, 4, 700-707.
PDB codes: 3e65 3e67 3e68 3e6l 3e6n 3e6o 3e6t 3e7g 3e7i 3e7m 3e7s 3e7t 3eah 3eai 3ebd 3ebf 3ej8
18321097 H.Ji, B.Z.Stanton, J.Igarashi, H.Li, P.Martásek, L.J.Roman, T.L.Poulos, and R.B.Silverman (2008).
Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors.
  J Am Chem Soc, 130, 3900-3914.
PDB codes: 3b3m 3b3n
18815130 J.Tejero, A.Biswas, Z.Q.Wang, R.C.Page, M.M.Haque, C.Hemann, J.L.Zweier, S.Misra, and D.J.Stuehr (2008).
Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase.
  J Biol Chem, 283, 33498-33507.
PDB code: 3dwj
18270755 S.Fukuzumi, and T.Kojima (2008).
Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding.
  J Biol Inorg Chem, 13, 321-333.  
18193303 S.M.Francis, A.Mittal, M.Sharma, and P.V.Bharatam (2008).
Design of benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis.
  J Mol Model, 14, 215-224.  
18836533 C.Wheatley (2007).
The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS.
  J Nutr Environ Med, 16, 181-211.  
18923642 C.Wheatley (2007).
Cobalamin in inflammation III - glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases.
  J Nutr Environ Med, 16, 212-226.  
17174478 J.J.Perry, L.Fan, and J.A.Tainer (2007).
Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair.
  Neuroscience, 145, 1280-1299.  
17517617 M.M.Haque, K.Panda, J.Tejero, K.S.Aulak, M.A.Fadlalla, A.T.Mustovich, and D.J.Stuehr (2007).
A connecting hinge represses the activity of endothelial nitric oxide synthase.
  Proc Natl Acad Sci U S A, 104, 9254-9259.  
17347455 P.R.Gangula, W.L.Maner, M.A.Micci, R.E.Garfield, and P.J.Pasricha (2007).
Diabetes induces sex-dependent changes in neuronal nitric oxide synthase dimerization and function in the rat gastric antrum.
  Am J Physiol Gastrointest Liver Physiol, 292, G725-G733.  
17363700 P.Zhang, X.Xu, X.Hu, E.D.van Deel, G.Zhu, and Y.Chen (2007).
Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure.
  Circ Res, 100, 1089-1098.  
17534526 T.L.Poulos (2007).
The Janus nature of heme.
  Nat Prod Rep, 24, 504-510.  
17666920 V.P.Ekshyyan, V.Y.Hebert, A.Khandelwal, and T.R.Dugas (2007).
Resveratrol inhibits rat aortic vascular smooth muscle cell proliferation via estrogen receptor dependent nitric oxide production.
  J Cardiovasc Pharmacol, 50, 83-93.  
17536854 Y.H.Le Nguyen, J.R.Winkler, and H.B.Gray (2007).
Probing heme coordination states of inducible nitric oxide synthase with a ReI(imidazole-alkyl-nitroarginine) sensitizer-wire.
  J Phys Chem B, 111, 6628-6633.  
16491103 A.Hrabák (2006).
Common ligands of G-protein-coupled receptors and arginine-utilizing enzymes.
  Br J Pharmacol, 147, 835-837.  
16491104 B.Christiansen, P.Wellendorph, and H.Bräuner-Osborne (2006).
Known regulators of nitric oxide synthase and arginase are agonists at the human G-protein-coupled receptor GPRC6A.
  Br J Pharmacol, 147, 855-863.  
17009316 D.C.Fry (2006).
Protein-protein interactions as targets for small molecule drug discovery.
  Biopolymers, 84, 535-552.  
16367758 D.Lefèvre-Groboillot, J.L.Boucher, D.Mansuy, and D.J.Stuehr (2006).
Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates.
  FEBS J, 273, 180-191.  
16804678 H.Li, J.Igarashi, J.Jamal, W.Yang, and T.L.Poulos (2006).
Structural studies of constitutive nitric oxide synthases with diatomic ligands bound.
  J Biol Inorg Chem, 11, 753-768.
PDB codes: 2g6h 2g6i 2g6j 2g6k 2g6l 2g6m 2g6n 2g6o
16572228 L.E.Llewellyn (2006).
Saxitoxin, a toxic marine natural product that targets a multitude of receptors.
  Nat Prod Rep, 23, 200-222.  
16411020 R.Sengupta, R.Sahoo, S.S.Ray, T.Dutta, A.Dasgupta, and S.Ghosh (2006).
Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment.
  Mol Cell Biochem, 284, 117-126.  
17132097 U.Förstermann (2006).
Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal.
  Biol Chem, 387, 1521-1533.  
16234921 D.J.Stuehr, C.C.Wei, Z.Wang, and R.Hille (2005).
Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
  Dalton Trans, (), 3427-3435.  
15955074 D.Lefèvre-Groboillot, J.L.Boucher, D.J.Stuehr, and D.Mansuy (2005).
Relationship between the structure of guanidines and N-hydroxyguanidines, their binding to inducible nitric oxide synthase (iNOS) and their iNOS-catalysed oxidation to NO.
  FEBS J, 272, 3172-3183.  
15954154 H.Yin, and A.D.Hamilton (2005).
Strategies for targeting protein-protein interactions with synthetic agents.
  Angew Chem Int Ed Engl, 44, 4130-4163.  
16249336 M.Jáchymová, P.Martásek, S.Panda, L.J.Roman, M.Panda, T.M.Shea, Y.Ishimura, J.J.Kim, and B.S.Masters (2005).
Recruitment of governing elements for electron transfer in the nitric oxide synthase family.
  Proc Natl Acad Sci U S A, 102, 15833-15838.  
16133202 M.L.Fernández, M.A.Martí, A.Crespo, and D.A.Estrin (2005).
Proximal effects in the modulation of nitric oxide synthase reactivity: a QM-MM study.
  J Biol Inorg Chem, 10, 595-604.  
15651036 S.B.Kirton, C.W.Murray, M.L.Verdonk, and R.D.Taylor (2005).
Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins.
  Proteins, 58, 836-844.  
15701046 S.Y.Proskuryakov, A.G.Konoplyannikov, V.G.Skvortsov, A.A.Mandrugin, and V.M.Fedoseev (2005).
Structure and activity of NO synthase inhibitors specific to the L-arginine binding site.
  Biochemistry (Mosc), 70, 8.  
15451052 D.Mansuy, and J.L.Boucher (2004).
Alternative nitric oxide-producing substrates for NO synthases.
  Free Radic Biol Med, 37, 1105-1121.  
15224385 H.Matter, and P.Kotsonis (2004).
Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents.
  Med Res Rev, 24, 662-684.  
14718923 M.L.Flinspach, H.Li, J.Jamal, W.Yang, H.Huang, J.M.Hah, J.A.Gómez-Vidal, E.A.Litzinger, R.B.Silverman, and T.L.Poulos (2004).
Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase.
  Nat Struct Mol Biol, 11, 54-59.
PDB codes: 1p6h 1p6i 1p6j 1p6k 1p6l 1p6m 1p6n 1q2o
15189165 O.Pylypenko, and I.Schlichting (2004).
Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s.
  Annu Rev Biochem, 73, 991.  
15071192 R.Fedorov, R.Vasan, D.K.Ghosh, and I.Schlichting (2004).
Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design.
  Proc Natl Acad Sci U S A, 101, 5892-5897.
PDB codes: 1vaf 1vag
15504246 S.Matsubara, H.Shibata, M.Takahashi, F.Ishikawa, T.Yokokura, T.Sugimura, and K.Wakabayashi (2004).
Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection.
  Cancer Sci, 95, 798-802.  
12509479 P.B.Massion, and J.L.Balligand (2003).
Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice.
  J Physiol, 546, 63-75.  
14614131 P.J.Kolodziejski, M.B.Rashid, and N.T.Eissa (2003).
Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.
  Proc Natl Acad Sci U S A, 100, 14263-14268.  
14510776 W.Zhang, T.Kuncewicz, Z.Y.Yu, L.Zou, X.Xu, and B.C.Kone (2003).
Protein-protein interactions involving inducible nitric oxide synthase.
  Acta Physiol Scand, 179, 137-142.  
12056914 A.C.Gorren, K.Schmidt, and B.Mayer (2002).
Binding of L-arginine and imidazole suggests heterogeneity of rat brain neuronal nitric oxide synthase.
  Biochemistry, 41, 7819-7829.  
11876653 A.R.Hurshman, and M.A.Marletta (2002).
Reactions catalyzed by the heme domain of inducible nitric oxide synthase: evidence for the involvement of tetrahydrobiopterin in electron transfer.
  Biochemistry, 41, 3439-3456.  
12111751 C.A.Kontogiorgis, and D.Hadjipavlou-Litina (2002).
Current trends in QSAR on NO donors and inhibitors of nitric oxide synthase (NOS)*.
  Med Res Rev, 22, 385-418.  
12665108 D.G.Renter, and J.M.Sargeant (2002).
Enterohemorrhagic Escherichia coli O157: epidemiology and ecology in bovine production environments.
  Anim Health Res Rev, 3, 83-94.  
11784303 J.Doyle, L.E.Llewellyn, C.S.Brinkworth, J.H.Bowie, K.L.Wegener, T.Rozek, P.A.Wabnitz, J.C.Wallace, and M.J.Tyler (2002).
Amphibian peptides that inhibit neuronal nitric oxide synthase. Isolation of lesuerin from the skin secretion of the Australian Stony Creek frog Litoria lesueuri.
  Eur J Biochem, 269, 100-109.  
  12076969 K.K.Wu (2002).
Regulation of endothelial nitric oxide synthase activity and gene expression.
  Ann N Y Acad Sci, 962, 122-130.  
12220171 K.Pant, A.M.Bilwes, S.Adak, D.J.Stuehr, and B.R.Crane (2002).
Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
  Biochemistry, 41, 11071-11079.
PDB codes: 1m7v 1m7z
11756668 S.Adak, A.M.Bilwes, K.Panda, D.Hosfield, K.S.Aulak, J.F.McDonald, J.A.Tainer, E.D.Getzoff, B.R.Crane, and D.J.Stuehr (2002).
Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans.
  Proc Natl Acad Sci U S A, 99, 107-112.  
12359874 S.Adak, M.Sharma, A.L.Meade, and D.J.Stuehr (2002).
A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity.
  Proc Natl Acad Sci U S A, 99, 13516-13521.  
11275480 A.Reif, L.Zecca, P.Riederer, M.Feelisch, and H.H.Schmidt (2001).
Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner.
  Free Radic Biol Med, 30, 803-808.  
11517317 D.K.Ghosh, M.B.Rashid, B.Crane, V.Taskar, M.Mast, M.A.Misukonis, J.B.Weinberg, and N.T.Eissa (2001).
Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions.
  Proc Natl Acad Sci U S A, 98, 10392-10397.  
11738185 D.L.Harris (2001).
High-valent intermediates of heme proteins and model compounds.
  Curr Opin Chem Biol, 5, 724-735.  
11358872 G.Golderer, E.R.Werner, S.Leitner, P.Gröbner, and G.Werner-Felmayer (2001).
Nitric oxide synthase is induced in sporulation of Physarum polycephalum.
  Genes Dev, 15, 1299-1309.  
11240372 H.Jiang, M.Ichikawa, A.Furukawa, S.Tomita, T.Ohnishi, and Y.Ichikawa (2001).
The optical interconversion of the P-450 and P-420 forms of neuronal nitric oxide synthase: effects of sodium cholate, mercury chloride and urea.
  Int J Biochem Cell Biol, 33, 155-162.  
11331003 H.Li, C.S.Raman, P.Martásek, B.S.Masters, and T.L.Poulos (2001).
Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors.
  Biochemistry, 40, 5399-5406.
PDB codes: 1ed6 1foi 1fol 1foo 1fop
11696684 U.Landmesser, and D.G.Harrison (2001).
Oxidative stress and vascular damage in hypertension.
  Coron Artery Dis, 12, 455-461.  
10975456 A.W.Munro, P.Taylor, and M.D.Walkinshaw (2000).
Structures of redox enzymes.
  Curr Opin Biotechnol, 11, 369-376.  
10769116 B.R.Crane, A.S.Arvai, S.Ghosh, E.D.Getzoff, D.J.Stuehr, and J.A.Tainer (2000).
Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
  Biochemistry, 39, 4608-4621.
PDB codes: 1dwv 1dww 1dwx
10889028 C.Moali, M.Brollo, J.Custot, M.A.Sari, J.L.Boucher, D.J.Stuehr, and D.Mansuy (2000).
Recognition of alpha-amino acids bearing various C=NOH functions by nitric oxide synthase and arginase involves very different structural determinants.
  Biochemistry, 39, 8208-8218.  
10927171 D.W.Reif, D.J.McCarthy, E.Cregan, and J.E.Macdonald (2000).
Discovery and development of neuronal nitric oxide synthase inhibitors.
  Free Radic Biol Med, 28, 1470-1477.  
10677491 K.McMillan, M.Adler, D.S.Auld, J.J.Baldwin, E.Blasko, L.J.Browne, D.Chelsky, D.Davey, R.E.Dolle, K.A.Eagen, S.Erickson, R.I.Feldman, C.B.Glaser, C.Mallari, M.M.Morrissey, M.H.Ohlmeyer, G.Pan, J.F.Parkinson, G.B.Phillips, M.A.Polokoff, N.H.Sigal, R.Vergona, M.Whitlow, T.A.Young, and J.J.Devlin (2000).
Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry.
  Proc Natl Acad Sci U S A, 97, 1506-1511.
PDB code: 1dd7
10691780 P.Lane, and S.S.Gross (2000).
The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity.
  Acta Physiol Scand, 168, 53-63.  
10694400 S.Boggs, L.Huang, and D.J.Stuehr (2000).
Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions.
  Biochemistry, 39, 2332-2339.  
10924132 V.Berka, and A.L.Tsai (2000).
Characterization of interactions among the heme center, tetrahydrobiopterin, and L-arginine binding sites of ferric eNOS using imidazole, cyanide, and nitric oxide as probes.
  Biochemistry, 39, 9373-9383.  
10769006 Y.Tian, Y.Xing, R.Magliozzo, K.Yu, B.R.Bloom, and J.Chan (2000).
A commercial preparation of catalase inhibits nitric oxide production by activated murine macrophages: role of arginase.
  Infect Immun, 68, 3015-3018.  
10331082 A.J.Hobbs, A.Higgs, and S.Moncada (1999).
Inhibition of nitric oxide synthase as a potential therapeutic target.
  Annu Rev Pharmacol Toxicol, 39, 191-220.  
10387045 A.P.Ledbetter, K.McMillan, L.J.Roman, B.S.Masters, J.H.Dawson, and M.Sono (1999).
Low-temperature stabilization and spectroscopic characterization of the dioxygen complex of the ferrous neuronal nitric oxide synthase oxygenase domain.
  Biochemistry, 38, 8014-8021.  
10625434 A.R.Hurshman, C.Krebs, D.E.Edmondson, B.H.Huynh, and M.A.Marletta (1999).
Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen.
  Biochemistry, 38, 15689-15696.  
10200153 A.Renodon-Cornière, J.L.Boucher, S.Dijols, D.J.Stuehr, and D.Mansuy (1999).
Efficient formation of nitric oxide from selective oxidation of N-aryl N'-hydroxyguanidines by inducible nitric oxide synthase.
  Biochemistry, 38, 4663-4668.  
10562539 B.R.Crane, R.J.Rosenfeld, A.S.Arvai, D.K.Ghosh, S.Ghosh, J.A.Tainer, D.J.Stuehr, and E.D.Getzoff (1999).
N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.
  EMBO J, 18, 6271-6281.
PDB codes: 1df1 1qom
10353832 C.Tetreau, M.Tourbez, A.Gorren, B.Mayer, and D.Lavalette (1999).
Dynamics of carbon monoxide binding with neuronal nitric oxide synthase.
  Biochemistry, 38, 7210-7218.  
10320659 D.J.Stuehr (1999).
Mammalian nitric oxide synthases.
  Biochim Biophys Acta, 1411, 217-230.  
10562538 D.K.Ghosh, B.R.Crane, S.Ghosh, D.Wolan, R.Gachhui, C.Crooks, A.Presta, J.A.Tainer, E.D.Getzoff, and D.J.Stuehr (1999).
Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
  EMBO J, 18, 6260-6270.
PDB codes: 1dwv 1dww 1dwx
10090758 D.L.Tierney, H.Huang, P.Martasek, B.S.Masters, R.B.Silverman, and B.M.Hoffman (1999).
ENDOR spectroscopic evidence for the position and structure of NG-hydroxy-L-arginine bound to holo-neuronal nitric oxide synthase.
  Biochemistry, 38, 3704-3710.  
10563817 J.Moore, J.M.Wood, and K.U.Schallreuter (1999).
Evidence for specific complex formation between alpha-melanocyte stimulating hormone and 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin using near infrared Fourier transform Raman spectroscopy.
  Biochemistry, 38, 15317-15324.  
10082966 K.Oettl, and G.Reibnegger (1999).
Pteridines as inhibitors of xanthine oxidase: structural requirements.
  Biochim Biophys Acta, 1430, 387-395.  
9914471 K.Schmidt, G.Werner-felmayer, B.Mayer, and E.R.Werner (1999).
Preferential inhibition of inducible nitric oxide synthase in intact cells by the 4-amino analogue of tetrahydrobiopterin.
  Eur J Biochem, 259, 25-31.  
10026272 L.Huang, H.M.Abu-Soud, R.Hille, and D.J.Stuehr (1999).
Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion.
  Biochemistry, 38, 1912-1920.  
10625450 M.Sono, A.P.Ledbetter, K.McMillan, L.J.Roman, T.M.Shea, B.S.Masters, and J.H.Dawson (1999).
Essential thiol requirement to restore pterin- or substrate-binding capability and to regenerate native enzyme-type high-spin heme spectra in the Escherichia coli-expressed tetrahydrobiopterin-free oxygenase domain of neuronal nitric oxide synthase.
  Biochemistry, 38, 15853-15862.  
10348620 T.L.Poulos, H.Li, and C.S.Raman (1999).
Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase.
  Curr Opin Chem Biol, 3, 131-137.  
9736922 B.R.Babu, and O.W.Griffith (1998).
Design of isoform-selective inhibitors of nitric oxide synthase.
  Curr Opin Chem Biol, 2, 491-500.  
9875848 C.S.Raman, H.Li, P.Martásek, V.Král, B.S.Masters, and T.L.Poulos (1998).
Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center.
  Cell, 95, 939-950.
PDB codes: 1nse 2nse 3nse 4nse
9667929 D.S.Bohle (1998).
Pathophysiological chemistry of nitric oxide and its oxygenation by-products.
  Curr Opin Chem Biol, 2, 194-200.  
9736696 J.M.Perry, and M.A.Marletta (1998).
Effects of transition metals on nitric oxide synthase catalysis.
  Proc Natl Acad Sci U S A, 95, 11101-11106.  
9860870 K.Brunner, A.Tortschanoff, B.Hemmens, P.J.Andrew, B.Mayer, and A.J.Kungl (1998).
Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
  Biochemistry, 37, 17545-17553.  
9753429 K.E.Goodwill, C.Sabatier, and R.C.Stevens (1998).
Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site.
  Biochemistry, 37, 13437-13445.
PDB code: 2toh
9799513 K.M.Rusche, M.M.Spiering, and M.A.Marletta (1998).
Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
  Biochemistry, 37, 15503-15512.  
9818193 M.A.Marletta, A.R.Hurshman, and K.M.Rusche (1998).
Catalysis by nitric oxide synthase.
  Curr Opin Chem Biol, 2, 656-663.  
9850605 S.Lamas, D.Pérez-Sala, and S.Moncada (1998).
Nitric oxide: from discovery to the clinic.
  Trends Pharmacol Sci, 19, 436-438.  
9914255 U.Ermler, W.Grabarse, S.Shima, M.Goubeaud, and R.K.Thauer (1998).
Active sites of transition-metal enzymes with a focus on nickel.
  Curr Opin Struct Biol, 8, 749-758.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer