spacer
spacer

PDBsum entry 2ix7

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Contractile protein/metal binding PDB id
2ix7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
145 a.a. *
58 a.a. *
Ligands
SO4 ×5
CYS
Waters ×144
* Residue conservation analysis
PDB id:
2ix7
Name: Contractile protein/metal binding
Title: Structure of apo-calmodulin bound to unconventional myosin v
Structure: Calmodulin. Chain: a, b. Fragment: residues 2-146. Synonym: cam. Engineered: yes. Other_details: apo-calmodulin. Myosin-5a. Chain: c. Fragment: residues 763-820.
Source: Mus musculus. House mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 511693.
Resolution:
2.50Å     R-factor:   0.216     R-free:   0.259
Authors: A.Houdusse,J.F.Gaucher,S.Mui,E.Krementsova,K.M.Trybus,C.Cohen
Key ref:
A.Houdusse et al. (2006). Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc Natl Acad Sci U S A, 103, 19326-19331. PubMed id: 17151196 DOI: 10.1073/pnas.0609436103
Date:
07-Jul-06     Release date:   13-Dec-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0DP26  (CALM1_MOUSE) -  Calmodulin-1 from Mus musculus
Seq:
Struc:
149 a.a.
145 a.a.
Protein chain
Pfam   ArchSchema ?
Q99104  (MYO5A_MOUSE) -  Unconventional myosin-Va from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1853 a.a.
58 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1073/pnas.0609436103 Proc Natl Acad Sci U S A 103:19326-19331 (2006)
PubMed id: 17151196  
 
 
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
A.Houdusse, J.F.Gaucher, E.Krementsova, S.Mui, K.M.Trybus, C.Cohen.
 
  ABSTRACT  
 
A 2.5-A resolution structure of calcium-free calmodulin (CaM) bound to the first two IQ motifs of the murine myosin V heavy chain reveals an unusual CaM conformation. The C-terminal lobe of each CaM adopts a semi-open conformation that grips the first part of the IQ motif (IQxxxR), whereas the N-terminal lobe adopts a closed conformation that interacts more weakly with the second part of the motif (GxxxR). Variable residues in the IQ motif play a critical role in determining the precise structure of the bound CaM, such that even the consensus residues of different motifs show unique interactions with CaM. This complex serves as a model for the lever arm region of many classes of unconventional myosins, as well as other IQ motif-containing proteins such as neuromodulin and IQGAPs.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Structure of the myosin V 2IQ complex. Two CaMs bound in tandem to the two IQ motifs (gray helix) derived from the sequence adjacent to the motor domain of murine myosin V are shown. Consensus sequence residues (*) of the IQ motif are shown in ball and stick. The helices of CaM, designated A–H, are colored in pairs (AB in green, CD in yellow, EF in red, GH in cyan). The orientation of the IQ motifs and CaM are antiparallel. The interlobe linker 2 (purple) joins the N- and C-terminal lobes. Linker 1 (pink, between the B and C helices) and linker 3 (blue, between the F and G helices) interact with consensus residues of the IQ motif. (Inset) A cartoon of the myosin V molecule and the region that was crystallized (red box).
Figure 2.
Fig. 2. Conserved features of the CaM / IQ motif recognition. CaM bound to each IQ motif adopts a semi-open C-lobe, and a closed N-lobe. The ribbon diagrams represent CaM (color-coded as in Fig. 1) bound to the first IQ motif in two orthogonal views about the y axis. Major interactions with the semi-open C-terminal lobe are: consensus residues Gln-774 and Arg-778 (green) form five hydrogen bonds with main chain atoms in linker 3 (blue), whereas apolar side chains (Ile-773, yellow; Ile-777, purple; Trp-780, black and pink) interact within the hydrophobic C-lobe. Consensus residues Gly-779 (orange ball) and Arg-783 (cyan), as well as Tyr-786 (yellow) interact with the surface of the N-lobe composed of linker 1 (pink) and helix A. Hydrogen bonds between Glu-114 in linker 3 of the C-lobe, and the main-chain nitrogen of Glu-45 and Ala-46 in the N-lobe, provide a sensing mechanism between the two halves of CaM.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21139419 D.L.Minor, and F.Findeisen (2010).
Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.
  Channels (Austin), 4, 459-474.  
20953164 E.Y.Kim, C.H.Rumpf, F.Van Petegem, R.J.Arant, F.Findeisen, E.S.Cooley, E.Y.Isacoff, and D.L.Minor (2010).
Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.
  EMBO J, 29, 3924-3938.
PDB code: 3oxq
20195380 J.W.Brown, and C.J.McKnight (2010).
Molecular model of the microvillar cytoskeleton and organization of the brush border.
  PLoS One, 5, e9406.  
20544963 M.D.Feldkamp, S.E.O'Donnell, L.Yu, and M.A.Shea (2010).
Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin.
  Proteins, 78, 2265-2282.  
19937325 R.C.Cheng, and B.S.Zhorov (2010).
Docking of calcium ions in proteins with flexible side chains and deformable backbones.
  Eur Biophys J, 39, 825-838.  
19473981 D.B.Halling, D.K.Georgiou, D.J.Black, G.Yang, J.L.Fallon, F.A.Quiocho, S.E.Pedersen, and S.L.Hamilton (2009).
Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin.
  J Biol Chem, 284, 20041-20051.
PDB code: 2vay
19877718 D.J.Black, D.LaMartina, and A.Persechini (2009).
The IQ domains in neuromodulin and PEP19 represent two major functional classes.
  Biochemistry, 48, 11766-11772.  
20428469 D.Parker, Z.Bryant, and S.L.Delp (2009).
Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics.
  Cell Mol Bioeng, 2, 366-374.  
20041208 M.Fromer, and J.M.Shifman (2009).
Tradeoff between stability and multispecificity in the design of promiscuous proteins.
  PLoS Comput Biol, 5, e1000627.  
19089983 T.I.Evans, and M.A.Shea (2009).
Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII.
  Proteins, 76, 47-61.  
19751682 V.Borsi, C.Luchinat, and G.Parigi (2009).
Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry.
  Biophys J, 97, 1765-1771.  
19399222 Y.Timsit, Z.Acosta, F.Allemand, C.Chiaruttini, and M.Springer (2009).
The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 s ribosomal subunit assembly.
  Int J Mol Sci, 10, 817-834.  
19255446 Y.Yang, T.G.Baboolal, V.Siththanandan, M.Chen, M.L.Walker, P.J.Knight, M.Peckham, and J.R.Sellers (2009).
A FERM domain autoregulates Drosophila myosin 7a activity.
  Proc Natl Acad Sci U S A, 106, 4189-4194.  
18940602 E.Y.Kim, C.H.Rumpf, Y.Fujiwara, E.S.Cooley, F.Van Petegem, and D.L.Minor (2008).
Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation.
  Structure, 16, 1455-1467.
PDB codes: 3dve 3dvj 3dvk 3dvm
18239852 K.M.Trybus (2008).
Myosin V from head to tail.
  Cell Mol Life Sci, 65, 1378-1389.  
19046570 M.F.Yip, G.Ramm, M.Larance, K.L.Hoehn, M.C.Wagner, M.Guilhaus, and D.E.James (2008).
CaMKII-mediated phosphorylation of the myosin motor Myo1c is required for insulin-stimulated GLUT4 translocation in adipocytes.
  Cell Metab, 8, 384-398.  
18585356 M.R.Tadross, I.E.Dick, and D.T.Yue (2008).
Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel.
  Cell, 133, 1228-1240.  
18400181 M.X.Mori, C.W.Vander Kooi, D.J.Leahy, and D.T.Yue (2008).
Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+.
  Structure, 16, 607-620.  
18518982 N.V.Valeyev, D.G.Bates, P.Heslop-Harrison, I.Postlethwaite, and N.V.Kotov (2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
  BMC Syst Biol, 2, 48.  
18583346 Q.Guo, J.E.Jureller, J.T.Warren, E.Solomaha, J.Florián, and W.J.Tang (2008).
Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
  J Biol Chem, 283, 23836-23845.  
18216256 X.D.Li, H.S.Jung, Q.Wang, R.Ikebe, R.Craig, and M.Ikebe (2008).
The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va.
  Proc Natl Acad Sci U S A, 105, 1140-1145.  
  17602618 A.M.Levin, K.Murase, P.J.Jackson, M.L.Flinspach, T.L.Poulos, and G.A.Weiss (2007).
Double barrel shotgun scanning of the caveolin-1 scaffolding domain.
  ACS Chem Biol, 2, 493-500.  
  19704657 A.P.Yamniuk, M.Rainaldi, and H.J.Vogel (2007).
Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein.
  Plant Signal Behav, 2, 354-357.  
17628590 J.Bosch, S.Turley, C.M.Roach, T.M.Daly, L.W.Bergman, and W.G.Hol (2007).
The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery.
  J Mol Biol, 372, 77-88.
PDB code: 2qac
17910470 S.Manceva, T.Lin, H.Pham, J.H.Lewis, Y.E.Goldman, and E.M.Ostap (2007).
Calcium regulation of calmodulin binding to and dissociation from the myo1c regulatory domain.
  Biochemistry, 46, 11718-11726.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer