 |
PDBsum entry 2htw
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Hydrolase
|
 |
|
Title:
|
 |
N4 neuraminidase in complex with dana
|
|
Structure:
|
 |
Neuraminidase. Chain: a
|
|
Source:
|
 |
Influenza a virus. Organism_taxid: 11320
|
|
Biol. unit:
|
 |
Tetramer (from PDB file)
|
|
Resolution:
|
 |
|
3.50Å
|
R-factor:
|
0.217
|
R-free:
|
0.295
|
|
|
Authors:
|
 |
R.J.Russell,L.F.Haire,D.J.Stevens,P.J.Collins,Y.P.Lin,G.M.Blackburn, A.J.Hay,S.J.Gamblin,J.J.Skehel
|
Key ref:
|
 |
R.J.Russell
et al.
(2006).
The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design.
Nature,
443,
45-49.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
26-Jul-06
|
Release date:
|
05-Sep-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q6XV46
(Q6XV46_9INFA) -
Neuraminidase from Influenza A virus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
470 a.a.
388 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.2.1.18
- exo-alpha-sialidase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
443:45-49
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design.
|
|
R.J.Russell,
L.F.Haire,
D.J.Stevens,
P.J.Collins,
Y.P.Lin,
G.M.Blackburn,
A.J.Hay,
S.J.Gamblin,
J.J.Skehel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The worldwide spread of H5N1 avian influenza has raised concerns that this virus
might acquire the ability to pass readily among humans and cause a pandemic. Two
anti-influenza drugs currently being used to treat infected patients are
oseltamivir (Tamiflu) and zanamivir (Relenza), both of which target the
neuraminidase enzyme of the virus. Reports of the emergence of drug resistance
make the development of new anti-influenza molecules a priority. Neuraminidases
from influenza type A viruses form two genetically distinct groups: group-1
contains the N1 neuraminidase of the H5N1 avian virus and group-2 contains the
N2 and N9 enzymes used for the structure-based design of current drugs. Here we
show by X-ray crystallography that these two groups are structurally distinct.
Group-1 neuraminidases contain a cavity adjacent to their active sites that
closes on ligand binding. Our analysis suggests that it may be possible to
exploit the size and location of the group-1 cavity to develop new
anti-influenza drugs.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: Molecular surfaces of group-1 and group-2
neuraminidases with bound oseltamivir showing the 150-cavity in
the group-1 structure that arises because of the distinct
conformation of the 150-loop. a, b, N1 (a; green) and N9 (b;
yellow) shown in surface representation with the protein main
chain shown in 'worm' representation. c, Superposition of the
active sites of apo-N1 (green) and N1 complexed with oseltamivir
(blue). Part of the electron density map from a low-resolution
(5.5 Å) difference Fourier calculated between apo-N1 and
oseltamivir-bound N1 data sets is shown in blue to indicate the
position of the 150-cavity.
|
 |
Figure 3.
Figure 3: Oseltamivir binding to the active sites of group-1
neuraminidases. a, Superposition of the active sites of N8
after a 30-min soak (dark blue) and a 3-day soak (cyan) with 20
M
oseltamivir. There are small changes in the position of Glu 119
and the inhibitor when the 150-loop closes after the longer
soaking time. b, Superposition of the active sites of N8 with
bound oseltamivir after the 3-day soak with 20 M
inhibitor (cyan) with N1 soaked for 30 min in 0.5 mM inhibitor
(green). In this case, the structures of the two different
subtypes of neuraminidase from group-1 are remarkably similar.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2006,
443,
45-49)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Albohy,
S.Mohan,
R.B.Zheng,
B.M.Pinto,
and
C.W.Cairo
(2011).
Inhibitor selectivity of a new class of oseltamivir analogs against viral neuraminidase over human neuraminidase enzymes.
|
| |
Bioorg Med Chem,
19,
2817-2822.
|
 |
|
|
|
|
 |
C.J.Woods,
M.Malaisree,
S.Hannongbua,
and
A.J.Mulholland
(2011).
A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
|
| |
J Chem Phys,
134,
054114.
|
 |
|
|
|
|
 |
H.Hinou,
R.Miyoshi,
Y.Takasu,
H.Kai,
M.Kurogochi,
S.Arioka,
X.D.Gao,
N.Miura,
N.Fujitani,
S.Omoto,
T.Yoshinaga,
T.Fujiwara,
T.Noshi,
H.Togame,
H.Takemoto,
and
S.Nishimura
(2011).
A strategy for neuraminidase inhibitors using mechanism-based labeling information.
|
| |
Chem Asian J,
6,
1048-1056.
|
 |
|
|
|
|
 |
J.Abdussamad,
and
S.Aris-Brosou
(2011).
The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host.
|
| |
BMC Evol Biol,
11,
6.
|
 |
|
|
|
|
 |
J.Li,
H.Zu Dohna,
C.J.Cardona,
J.Miller,
and
T.E.Carpenter
(2011).
Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses.
|
| |
PLoS One,
6,
e14722.
|
 |
|
|
|
|
 |
J.R.Tisoncik,
Y.Guo,
K.S.Cordero,
J.Yu,
J.Wang,
Y.Cao,
and
L.Rong
(2011).
Identification of critical residues of influenza neuraminidase in viral particle release.
|
| |
Virol J,
8,
14.
|
 |
|
|
|
|
 |
M.Niikura,
N.Bance,
S.Mohan,
and
B.Mario Pinto
(2011).
Replication inhibition activity of carbocycles related to oseltamivir on influenza A virus in vitro.
|
| |
Antiviral Res,
90,
160-163.
|
 |
|
|
|
|
 |
M.Shu,
Z.Lin,
Y.Zhang,
Y.Wu,
H.Mei,
and
Y.Jiang
(2011).
Molecular dynamics simulation of oseltamivir resistance in neuraminidase of avian influenza H5N1 virus.
|
| |
J Mol Model,
17,
587-592.
|
 |
|
|
|
|
 |
P.M.Schmidt,
R.M.Attwood,
P.G.Mohr,
S.A.Barrett,
and
J.L.McKimm-Breschkin
(2011).
A generic system for the expression and purification of soluble and stable influenza neuraminidase.
|
| |
PLoS One,
6,
e16284.
|
 |
|
|
|
|
 |
Y.Liu,
F.Jing,
Y.Xu,
Y.Xie,
F.Shi,
H.Fang,
M.Li,
and
W.Xu
(2011).
Design, synthesis and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors.
|
| |
Bioorg Med Chem,
19,
2342-2348.
|
 |
|
|
|
|
 |
A.Escalante,
R.Calderón,
A.Valdivia,
R.de Anda,
G.Hernández,
O.T.Ramírez,
G.Gosset,
and
F.Bolívar
(2010).
Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
|
| |
Microb Cell Fact,
9,
21.
|
 |
|
|
|
|
 |
A.Ghosh,
A.Nandy,
and
P.Nandy
(2010).
Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase.
|
| |
BMC Struct Biol,
10,
6.
|
 |
|
|
|
|
 |
H.Ge,
Y.F.Wang,
J.Xu,
Q.Gu,
H.B.Liu,
P.G.Xiao,
J.Zhou,
Y.Liu,
Z.Yang,
and
H.Su
(2010).
Anti-influenza agents from Traditional Chinese Medicine.
|
| |
Nat Prod Rep,
27,
1758-1780.
|
 |
|
|
|
|
 |
J.C.Sung,
A.W.Van Wynsberghe,
R.E.Amaro,
W.W.Li,
and
J.A.McCammon
(2010).
Role of secondary sialic acid binding sites in influenza N1 neuraminidase.
|
| |
J Am Chem Soc,
132,
2883-2885.
|
 |
|
|
|
|
 |
J.D.Bloom,
L.I.Gong,
and
D.Baltimore
(2010).
Permissive secondary mutations enable the evolution of influenza oseltamivir resistance.
|
| |
Science,
328,
1272-1275.
|
 |
|
|
|
|
 |
J.D.Durrant,
and
J.A.McCammon
(2010).
Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design.
|
| |
Comput Biol Chem,
34,
97.
|
 |
|
|
|
|
 |
K.Das,
J.M.Aramini,
L.C.Ma,
R.M.Krug,
and
E.Arnold
(2010).
Structures of influenza A proteins and insights into antiviral drug targets.
|
| |
Nat Struct Mol Biol,
17,
530-538.
|
 |
|
|
|
|
 |
L.Le,
E.H.Lee,
D.J.Hardy,
T.N.Truong,
and
K.Schulten
(2010).
Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases.
|
| |
PLoS Comput Biol,
6,
0.
|
 |
|
|
|
|
 |
M.C.Giocondi,
F.Ronzon,
M.C.Nicolai,
P.Dosset,
P.E.Milhiet,
M.Chevalier,
and
C.Le Grimellec
(2010).
Organization of influenza A virus envelope at neutral and low pH.
|
| |
J Gen Virol,
91,
329-338.
|
 |
|
|
|
|
 |
M.Fourment,
J.T.Wood,
A.J.Gibbs,
and
M.J.Gibbs
(2010).
Evolutionary dynamics of the N1 neuraminidases of the main lineages of influenza A viruses.
|
| |
Mol Phylogenet Evol,
56,
526-535.
|
 |
|
|
|
|
 |
N.A.Ilyushina,
J.P.Seiler,
J.E.Rehg,
R.G.Webster,
and
E.A.Govorkova
(2010).
Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets.
|
| |
PLoS Pathog,
6,
e1000933.
|
 |
|
|
|
|
 |
Q.Li,
J.Qi,
W.Zhang,
C.J.Vavricka,
Y.Shi,
J.Wei,
E.Feng,
J.Shen,
J.Chen,
D.Liu,
J.He,
J.Yan,
H.Liu,
H.Jiang,
M.Teng,
X.Li,
and
G.F.Gao
(2010).
The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site.
|
| |
Nat Struct Mol Biol,
17,
1266-1268.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Patil,
S.Das,
A.Stanley,
L.Yadav,
A.Sudhakar,
and
A.K.Varma
(2010).
Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.
|
| |
PLoS One,
5,
e12029.
|
 |
|
|
|
|
 |
S.J.Gamblin,
and
J.J.Skehel
(2010).
Influenza hemagglutinin and neuraminidase membrane glycoproteins.
|
| |
J Biol Chem,
285,
28403-28409.
|
 |
|
|
|
|
 |
S.Munier,
T.Larcher,
F.Cormier-Aline,
D.Soubieux,
B.Su,
L.Guigand,
B.Labrosse,
Y.Cherel,
P.Quéré,
D.Marc,
and
N.Naffakh
(2010).
A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens.
|
| |
J Virol,
84,
940-952.
|
 |
|
|
|
|
 |
S.Rudrawar,
J.C.Dyason,
M.A.Rameix-Welti,
F.J.Rose,
P.S.Kerry,
R.J.Russell,
S.van der Werf,
R.J.Thomson,
N.Naffakh,
and
M.von Itzstein
(2010).
Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase.
|
| |
Nat Commun,
1,
113.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Goletić,
A.Gagić,
E.Residbegović,
A.Kustura,
A.Kavazović,
V.Savić,
T.Harder,
E.Starick,
and
S.Prasović
(2010).
Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.
|
| |
Avian Dis,
54,
496-501.
|
 |
|
|
|
|
 |
T.H.Chang,
F.L.Hsieh,
T.P.Ko,
K.H.Teng,
P.H.Liang,
and
A.H.Wang
(2010).
Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.
|
| |
Plant Cell,
22,
454-467.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.M.Deyde,
T.G.Sheu,
A.A.Trujillo,
M.Okomo-Adhiambo,
R.Garten,
A.I.Klimov,
and
L.V.Gubareva
(2010).
Detection of molecular markers of drug resistance in 2009 pandemic influenza A (H1N1) viruses by pyrosequencing.
|
| |
Antimicrob Agents Chemother,
54,
1102-1110.
|
 |
|
|
|
|
 |
X.Duval,
S.van der Werf,
T.Blanchon,
A.Mosnier,
M.Bouscambert-Duchamp,
A.Tibi,
V.Enouf,
C.Charlois-Ou,
C.Vincent,
L.Andreoletti,
F.Tubach,
B.Lina,
F.Mentré,
C.Leport,
C.Leport,
L.Andreoletti,
T.Blanchon,
F.Carrat,
X.Duval,
A.Guimfack,
B.Lina,
S.Loubière,
F.Mentré,
A.Mosnier,
A.Tibi,
F.Tubach,
S.van der Werf,
C.Charlois-Ou,
M.Bouscambert-Duchamp,
F.Bricaire,
J.M.Cohen,
V.Enouf,
A.Flahault,
J.P.Moatti,
C.Vincent,
J.Y.Vogel,
Z.Eid,
C.Peurichard,
M.Pecking,
S.Dantin,
A.Gysembergh-Houal,
G.Chêne,
C.Hannoun,
D.Vittecoq,
S.Boucherit,
Q.Dornic,
G.Quintin,
J.R.Alea,
J.L.Aleonard,
L.Arditti,
C.Baranes,
J.Beaujard,
C.Beaurain,
M.Behar,
P.Beignot-Devalmont,
D.Biquet,
M.Blanchard,
E.Blot,
X.Bodin,
H.Bouaniche,
L.Boulet,
O.Bourgeois,
F.Bretillon,
N.Breton,
F.Broyer,
P.Buffler,
E.Camper,
P.Carissimo,
J.Carrera,
P.Causse,
J.P.Cayet,
P.Cayron,
C.Cazard,
C.Chaix,
D.Chazerans,
J.A.Cheftel,
G.Codron,
G.Cooren,
L.Coutrey,
J.J.Crappier,
C.Daugenet,
C.Dauzat,
F.Defreyn,
G.Delamare,
D.Delsart,
P.Demure,
P.Desmarchelier,
A.Domenech,
D.Dubois,
G.Laroy,
E.Dubrana,
P.Dumond,
A.Dumont,
G.Durel,
P.Ellé,
F.Evellin,
P.Eyraud,
G.Fhal,
J.C.Fournillou,
and
G.Galesne Herceg
(2010).
Efficacy of oseltamivir-zanamivir combination compared to each monotherapy for seasonal influenza: a randomized placebo-controlled trial.
|
| |
PLoS Med,
7,
e1000362.
|
 |
|
|
|
|
 |
Y.P.Lin,
V.Gregory,
P.Collins,
J.Kloess,
S.Wharton,
N.Cattle,
A.Lackenby,
R.Daniels,
and
A.Hay
(2010).
Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment?
|
| |
J Virol,
84,
6769-6781.
|
 |
|
|
|
|
 |
A.C.Hurt,
J.K.Holien,
and
I.G.Barr
(2009).
In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses.
|
| |
Antimicrob Agents Chemother,
53,
4433-4440.
|
 |
|
|
|
|
 |
A.C.Hurt,
J.K.Holien,
M.Parker,
A.Kelso,
and
I.G.Barr
(2009).
Zanamivir-resistant influenza viruses with a novel neuraminidase mutation.
|
| |
J Virol,
83,
10366-10373.
|
 |
|
|
|
|
 |
A.C.Mishra,
S.S.Cherian,
A.K.Chakrabarti,
S.D.Pawar,
S.M.Jadhav,
B.Pal,
S.Raut,
S.Koratkar,
and
S.S.Kode
(2009).
A unique influenza A (H5N1) virus causing a focal poultry outbreak in 2007 in Manipur, India.
|
| |
Virol J,
6,
26.
|
 |
|
|
|
|
 |
A.K.Chakrabarti,
S.D.Pawar,
S.S.Cherian,
S.S.Koratkar,
S.M.Jadhav,
B.Pal,
S.Raut,
V.Thite,
S.S.Kode,
S.S.Keng,
B.J.Payyapilly,
J.Mullick,
and
A.C.Mishra
(2009).
Characterization of the influenza A H5N1 viruses of the 2008-09 outbreaks in India reveals a third introduction and possible endemicity.
|
| |
PLoS One,
4,
e7846.
|
 |
|
|
|
|
 |
A.S.Monto
(2009).
Implications of antiviral resistance of influenza viruses.
|
| |
Clin Infect Dis,
48,
397-399.
|
 |
|
|
|
|
 |
B.Su,
S.Wurtzer,
M.A.Rameix-Welti,
D.Dwyer,
S.van der Werf,
N.Naffakh,
F.Clavel,
and
B.Labrosse
(2009).
Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA).
|
| |
PLoS One,
4,
e8495.
|
 |
|
|
|
|
 |
E.A.Govorkova,
N.A.Ilyushina,
J.L.McClaren,
T.S.Naipospos,
B.Douangngeun,
and
R.G.Webster
(2009).
Susceptibility of highly pathogenic H5N1 influenza viruses to the neuraminidase inhibitor oseltamivir differs in vitro and in a mouse model.
|
| |
Antimicrob Agents Chemother,
53,
3088-3096.
|
 |
|
|
|
|
 |
I.Stephenson,
J.Democratis,
A.Lackenby,
T.McNally,
J.Smith,
M.Pareek,
J.Ellis,
A.Bermingham,
K.Nicholson,
and
M.Zambon
(2009).
Neuraminidase inhibitor resistance after oseltamivir treatment of acute influenza A and B in children.
|
| |
Clin Infect Dis,
48,
389-396.
|
 |
|
|
|
|
 |
J.D.Durrant,
R.E.Amaro,
and
J.A.McCammon
(2009).
AutoGrow: a novel algorithm for protein inhibitor design.
|
| |
Chem Biol Drug Des,
73,
168-178.
|
 |
|
|
|
|
 |
J.Uhlendorff,
T.Matrosovich,
H.D.Klenk,
and
M.Matrosovich
(2009).
Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.
|
| |
Arch Virol,
154,
945-957.
|
 |
|
|
|
|
 |
L.Le,
E.Lee,
K.Schulten,
and
T.N.Truong
(2009).
Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza.
|
| |
PLoS Curr,
1,
RRN1015.
|
 |
|
|
|
|
 |
M.A.Rameix-Welti,
M.L.Zarantonelli,
D.Giorgini,
C.Ruckly,
M.Marasescu,
S.van der Werf,
J.M.Alonso,
N.Naffakh,
and
M.K.Taha
(2009).
Influenza A virus neuraminidase enhances meningococcal adhesion to epithelial cells through interaction with sialic acid-containing meningococcal capsules.
|
| |
Infect Immun,
77,
3588-3595.
|
 |
|
|
|
|
 |
M.Lawrenz,
R.Baron,
and
J.A.McCammon
(2009).
Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir.
|
| |
J Chem Theory Comput,
5,
1106-1116.
|
 |
|
|
|
|
 |
N.X.Wang,
and
J.J.Zheng
(2009).
Computational studies of H5N1 influenza virus resistance to oseltamivir.
|
| |
Protein Sci,
18,
707-715.
|
 |
|
|
|
|
 |
P.K.Dhar,
C.S.Thwin,
K.Tun,
Y.Tsumoto,
S.Maurer-Stroh,
F.Eisenhaber,
and
U.Surana
(2009).
Synthesizing non-natural parts from natural genomic template.
|
| |
J Biol Eng,
3,
2.
|
 |
|
|
|
|
 |
P.M.Colman
(2009).
New antivirals and drug resistance.
|
| |
Annu Rev Biochem,
78,
95.
|
 |
|
|
|
|
 |
R.E.Amaro,
X.Cheng,
I.Ivanov,
D.Xu,
and
J.A.McCammon
(2009).
Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations.
|
| |
J Am Chem Soc,
131,
4702-4709.
|
 |
|
|
|
|
 |
R.M.Krug,
and
J.M.Aramini
(2009).
Emerging antiviral targets for influenza A virus.
|
| |
Trends Pharmacol Sci,
30,
269-277.
|
 |
|
|
|
|
 |
S.Khurana,
A.L.Suguitan,
Y.Rivera,
C.P.Simmons,
A.Lanzavecchia,
F.Sallusto,
J.Manischewitz,
L.R.King,
K.Subbarao,
and
H.Golding
(2009).
Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets.
|
| |
PLoS Med,
6,
e1000049.
|
 |
|
|
|
|
 |
S.Maurer-Stroh,
J.Ma,
R.T.Lee,
F.L.Sirota,
and
F.Eisenhaber
(2009).
Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites.
|
| |
Biol Direct,
4,
18; discussion 18.
|
 |
|
|
|
|
 |
V.M.Deyde,
and
L.V.Gubareva
(2009).
Influenza genome analysis using pyrosequencing method: current applications for a moving target.
|
| |
Expert Rev Mol Diagn,
9,
493-509.
|
 |
|
|
|
|
 |
V.M.Deyde,
T.Nguyen,
R.A.Bright,
A.Balish,
B.Shu,
S.Lindstrom,
A.I.Klimov,
and
L.V.Gubareva
(2009).
Detection of molecular markers of antiviral resistance in influenza A (H5N1) viruses using a pyrosequencing method.
|
| |
Antimicrob Agents Chemother,
53,
1039-1047.
|
 |
|
|
|
|
 |
Y.Pei,
J.Swinton,
D.Ojkic,
and
S.Sharif
(2009).
Genetic characterization of two low pathogenic avian influenza virus H5N1 isolates from Ontario, Canada.
|
| |
Virus Genes,
38,
149-154.
|
 |
|
|
|
|
 |
Z.W.Yang,
X.M.Wu,
L.J.Zhou,
and
G.Yang
(2009).
A proline-based neuraminidase inhibitor: DFT studies on the zwitterion conformation, stability and formation.
|
| |
Int J Mol Sci,
10,
3918-3930.
|
 |
|
|
|
|
 |
Z.Yang,
G.Yang,
Y.Zu,
Y.Fu,
and
L.Zhou
(2009).
The conformational analysis and proton transfer of neuraminidase inhibitors: a theoretical study.
|
| |
Phys Chem Chem Phys,
11,
10035-10041.
|
 |
|
|
|
|
 |
A.C.Alvarez,
M.E.Brunck,
V.Boyd,
R.Lai,
E.Virtue,
W.Chen,
C.Bletchly,
H.G.Heine,
and
R.Barnard
(2008).
A broad spectrum, one-step reverse-transcription PCR amplification of the neuraminidase gene from multiple subtypes of influenza A virus.
|
| |
Virol J,
5,
77.
|
 |
|
|
|
|
 |
A.Lackenby,
C.I.Thompson,
and
J.Democratis
(2008).
The potential impact of neuraminidase inhibitor resistant influenza.
|
| |
Curr Opin Infect Dis,
21,
626-638.
|
 |
|
|
|
|
 |
E.Obayashi,
H.Yoshida,
F.Kawai,
N.Shibayama,
A.Kawaguchi,
K.Nagata,
J.R.Tame,
and
S.Y.Park
(2008).
The structural basis for an essential subunit interaction in influenza virus RNA polymerase.
|
| |
Nature,
454,
1127-1131.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Beigel,
and
M.Bray
(2008).
Current and future antiviral therapy of severe seasonal and avian influenza.
|
| |
Antiviral Res,
78,
91.
|
 |
|
|
|
|
 |
K.Ray,
V.A.Potdar,
S.S.Cherian,
S.D.Pawar,
S.M.Jadhav,
S.R.Waregaonkar,
A.A.Joshi,
and
A.C.Mishra
(2008).
Characterization of the complete genome of influenza A (H5N1) virus isolated during the 2006 outbreak in poultry in India.
|
| |
Virus Genes,
36,
345-353.
|
 |
|
|
|
|
 |
L.S.Cheng,
R.E.Amaro,
D.Xu,
W.W.Li,
P.W.Arzberger,
and
J.A.McCammon
(2008).
Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase.
|
| |
J Med Chem,
51,
3878-3894.
|
 |
|
|
|
|
 |
M.A.Rameix-Welti,
V.Enouf,
F.Cuvelier,
P.Jeannin,
and
S.van der Werf
(2008).
Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses provide insights for the emergence of natural resistance to oseltamivir.
|
| |
PLoS Pathog,
4,
e1000103.
|
 |
|
|
|
|
 |
M.Malaisree,
T.Rungrotmongkol,
P.Decha,
P.Intharathep,
O.Aruksakunwong,
and
S.Hannongbua
(2008).
Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1.
|
| |
Proteins,
71,
1908-1918.
|
 |
|
|
|
|
 |
M.R.Landon,
R.E.Amaro,
R.Baron,
C.H.Ngan,
D.Ozonoff,
J.A.McCammon,
and
S.Vajda
(2008).
Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble.
|
| |
Chem Biol Drug Des,
71,
106-116.
|
 |
|
|
|
|
 |
M.von Itzstein
(2008).
Disease-associated carbohydrate-recognising proteins and structure-based inhibitor design.
|
| |
Curr Opin Struct Biol,
18,
558-566.
|
 |
|
|
|
|
 |
M.von Itzstein
(2008).
Avian influenza virus, a very sticky situation.
|
| |
Curr Opin Chem Biol,
12,
102-108.
|
 |
|
|
|
|
 |
N.A.Ilyushina,
A.Hay,
N.Yilmaz,
A.C.Boon,
R.G.Webster,
and
E.A.Govorkova
(2008).
Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice.
|
| |
Antimicrob Agents Chemother,
52,
3889-3897.
|
 |
|
|
|
|
 |
P.J.Collins,
L.F.Haire,
Y.P.Lin,
J.Liu,
R.J.Russell,
P.A.Walker,
J.J.Skehel,
S.R.Martin,
A.J.Hay,
and
S.J.Gamblin
(2008).
Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants.
|
| |
Nature,
453,
1258-1261.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Xu,
X.Zhu,
R.A.Dwek,
J.Stevens,
and
I.A.Wilson
(2008).
Structural characterization of the 1918 influenza virus H1N1 neuraminidase.
|
| |
J Virol,
82,
10493-10501.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.L.Yen,
N.A.Ilyushina,
R.Salomon,
E.Hoffmann,
R.G.Webster,
and
E.A.Govorkova
(2007).
Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo.
|
| |
J Virol,
81,
12418-12426.
|
 |
|
|
|
|
 |
J.L.McKimm-Breschkin,
P.W.Selleck,
T.B.Usman,
and
M.A.Johnson
(2007).
Reduced sensitivity of influenza A (H5N1) to oseltamivir.
|
| |
Emerg Infect Dis,
13,
1354-1357.
|
 |
|
|
|
|
 |
J.S.Peiris,
M.D.de Jong,
and
Y.Guan
(2007).
Avian influenza virus (H5N1): a threat to human health.
|
| |
Clin Microbiol Rev,
20,
243-267.
|
 |
|
|
|
|
 |
M.von Itzstein
(2007).
The war against influenza: discovery and development of sialidase inhibitors.
|
| |
Nat Rev Drug Discov,
6,
967-974.
|
 |
|
|
|
|
 |
P.A.Reece
(2007).
Neuraminidase inhibitor resistance in influenza viruses.
|
| |
J Med Virol,
79,
1577-1586.
|
 |
|
|
|
|
 |
E.De Clercq
(2006).
Antiviral agents active against influenza A viruses.
|
| |
Nat Rev Drug Discov,
5,
1015-1025.
|
 |
|
|
|
|
 |
H.C.Lee,
J.Salzemann,
N.Jacq,
H.Y.Chen,
L.Y.Ho,
I.Merelli,
L.Milanesi,
V.Breton,
S.C.Lin,
and
Y.T.Wu
(2006).
Grid-enabled high-throughput in silico screening against influenza A neuraminidase.
|
| |
IEEE Trans Nanobioscience,
5,
288-295.
|
 |
|
|
|
|
 |
J.R.Mesters,
J.Tan,
and
R.Hilgenfeld
(2006).
Viral enzymes.
|
| |
Curr Opin Struct Biol,
16,
776-786.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |