|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
(+ 3 more)
322 a.a.
|
 |
|
|
|
|
|
|
|
(+ 3 more)
175 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
Crystal structure of a h5n1 influenza virus hemagglutinin.
|
|
Structure:
|
 |
Hemagglutinin. Chain: a, c, e, g, i, k, m, o, q. Fragment: receptor binding domain, ha14. Engineered: yes. Hemagglutinin. Chain: b, d, f, h, j, l, n, p, r. Fragment: membrane fusion domain, ha2. Engineered: yes
|
|
Source:
|
 |
Influenza a virus (a/viet nam/1203/2004(h5n1)). Organism_taxid: 284218. Strain: a/vietnam/1203/2004. Expressed in: trichoplusia ni. Expression_system_taxid: 7111.
|
|
Biol. unit:
|
 |
Hexamer (from PDB file)
|
|
Resolution:
|
 |
|
2.95Å
|
R-factor:
|
0.269
|
R-free:
|
0.319
|
|
|
Authors:
|
 |
J.Stevens,I.A.Wilson
|
Key ref:
|
 |
J.Stevens
et al.
(2006).
Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus.
Science,
312,
404-410.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Jan-06
|
Release date:
|
02-May-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
312:404-410
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus.
|
|
J.Stevens,
O.Blixt,
T.M.Tumpey,
J.K.Taubenberger,
J.C.Paulson,
I.A.Wilson.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly
pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and
other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this
Viet04 HA reveals an avian alpha2-3 sialic acid receptor binding preference.
Introduction of mutations that can convert H1 serotype HAs to human alpha2-6
receptor specificity only enhanced or reduced affinity for avian-type receptors.
However, mutations that can convert avian H2 and H3 HAs to human receptor
specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to
a natural human alpha2-6 glycan, which suggests a path for this H5N1 virus to
gain a foothold in the human population.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Crystal structure of Viet04 HA and comparison with 1918
human H1, duck H5, and 1968 human H3 HAs. (A) Overview of the
Viet04 trimer, represented as a ribbon diagram. For clarity,
each monomer has been colored differently. Carbohydrates
observed in the electron-density maps are colored orange, and
all the asparagines that make up a glycosylation site are
labeled. Only Glu20, Glu289, and Phe^154 are not labeled, as
these are on the back of the molecule. The location of the
receptor binding, cleavage, and basic patch sites are
highlighted only on one monomer. All the figures were generated
and rendered with the use of MacPymol (66). (B) Structural
comparison of the Viet04 monomer (olive) with duck H5 (orange)
and 1918 H1 (red) HAs. Structures were first superimposed on the
HA2 domain of Viet04 through the following residues: Viet04,
Gly1 to Pro160; 1918 H1 (PDB: 1rd8), Gly1 to Pro160;
H3(PDB:2hmg), Gly1 to Pro160; H5 (PDB: 1jsm [PDB]
), Gly1 to Pro160. Orientation of the overlay approximates to
the blue monomer in (A). (C) Superimposition of the two long
-helices of HA2
for 1918 H1 (PDB: 1rd8), avian H5 (PDB: 1jsm [PDB]
), human H3 (PDB: 2hmg [PDB]
), and Viet04 reveal that the extended interhelical loop of
Viet04 is more similar to the 1918 H1 than to the existing avian
H5 structure. The side chain of Phe^63 is illustrated as an
example of the close proximity of the two structures.
|
 |
Figure 2.
Fig. 2. Antigenic variation in recent H5N1 viruses mapped onto
the Viet04 structure. (Left) Side view of the Viet04 structure
in which natural mutations identified by comparison of 2005 with
2004 isolates (23) are colored yellow; escape mutants (24, 25)
are blue; and those that overlap in both analyses are green. All
of the 2004 and 2005 strains have a new potential glycosylation
site at position 158 in the HA1 chain (orange). The receptor
binding site is highlighted with a red oval. (Right) Top view
looking down onto the globular membrane distal end of the trimer
around the RBD showing that the mutations mainly cluster around
the RBD.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2006,
312,
404-410)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.M.Morens,
K.Subbarao,
and
J.K.Taubenberger
(2012).
Engineering H5N1 avian influenza viruses to study human adaptation.
|
| |
Nature,
486,
335-340.
|
 |
|
|
|
|
 |
M.Imai,
T.Watanabe,
M.Hatta,
S.C.Das,
M.Ozawa,
K.Shinya,
G.Zhong,
A.Hanson,
H.Katsura,
S.Watanabe,
C.Li,
E.Kawakami,
S.Yamada,
M.Kiso,
Y.Suzuki,
E.A.Maher,
G.Neumann,
and
Y.Kawaoka
(2012).
Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
|
| |
Nature,
486,
420-428.
|
 |
|
|
|
|
 |
D.M.Tscherne,
and
A.García-Sastre
(2011).
Virulence determinants of pandemic influenza viruses.
|
| |
J Clin Invest,
121,
6.
|
 |
|
|
|
|
 |
G.B.Triana-Baltzer,
R.L.Sanders,
M.Hedlund,
K.A.Jensen,
L.M.Aschenbrenner,
J.L.Larson,
and
F.Fang
(2011).
Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181.
|
| |
J Antimicrob Chemother,
66,
15-28.
|
 |
|
|
|
|
 |
H.Shelton,
G.Ayora-Talavera,
J.Ren,
S.Loureiro,
R.J.Pickles,
W.S.Barclay,
and
I.M.Jones
(2011).
Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential.
|
| |
J Virol,
85,
1875-1880.
|
 |
|
|
|
|
 |
J.Abdussamad,
and
S.Aris-Brosou
(2011).
The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host.
|
| |
BMC Evol Biol,
11,
6.
|
 |
|
|
|
|
 |
J.L.Wasilenko,
A.M.Arafa,
A.A.Selim,
M.K.Hassan,
M.M.Aly,
A.Ali,
S.Nassif,
E.Elebiary,
A.Balish,
A.Klimov,
D.L.Suarez,
D.E.Swayne,
and
M.J.Pantin-Jackwood
(2011).
Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks.
|
| |
Arch Virol,
156,
37-51.
|
 |
|
|
|
|
 |
J.Wei,
B.Yan,
Z.Chen,
T.Li,
F.Deng,
H.Wang,
and
Z.Hu
(2011).
Production and characterization of monoclonal antibodies against the hemagglutinin of H5N1 and antigenic investigation of avian influenza H5N1 viruses isolated from China.
|
| |
Can J Microbiol,
57,
42-48.
|
 |
|
|
|
|
 |
K.T.Huang,
K.Gorska,
S.Alvarez,
S.Barluenga,
and
N.Winssinger
(2011).
Combinatorial self-assembly of glycan fragments into microarrays.
|
| |
Chembiochem,
12,
56-60.
|
 |
|
|
|
|
 |
M.W.Chen,
H.Y.Liao,
Y.Huang,
J.T.Jan,
C.C.Huang,
C.T.Ren,
C.Y.Wu,
T.J.Cheng,
D.D.Ho,
and
C.H.Wong
(2011).
Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin.
|
| |
Proc Natl Acad Sci U S A,
108,
3510-3515.
|
 |
|
|
|
|
 |
N.Goñi,
G.Moratorio,
V.Ramas,
L.Coppola,
H.Chiparelli,
and
J.Cristina
(2011).
Phylogenetic analysis of pandemic 2009 influenza A virus circulating in the South American region: genetic relationships and vaccine strain match.
|
| |
Arch Virol,
156,
87-94.
|
 |
|
|
|
|
 |
R.A.Medina,
and
A.García-Sastre
(2011).
Influenza A viruses: new research developments.
|
| |
Nat Rev Microbiol,
9,
590-603.
|
 |
|
|
|
|
 |
S.Ge,
and
Z.Wang
(2011).
An overview of influenza A virus receptors.
|
| |
Crit Rev Microbiol,
37,
157-165.
|
 |
|
|
|
|
 |
S.J.Drews,
K.Pabbaraju,
S.Wong,
K.L.Tokaryk,
J.May-Hadford,
B.Lee,
R.Tellier,
and
M.Louie
(2011).
Surveillance of autopsy cases for D222G substitutions in haemagglutinin of the pandemic (H1N1) 2009 virus in Alberta, Canada.
|
| |
Clin Microbiol Infect,
17,
582-584.
|
 |
|
|
|
|
 |
T.R.Maines,
L.M.Chen,
N.Van Hoeven,
T.M.Tumpey,
O.Blixt,
J.A.Belser,
K.M.Gustin,
M.B.Pearce,
C.Pappas,
J.Stevens,
N.J.Cox,
J.C.Paulson,
R.Raman,
R.Sasisekharan,
J.M.Katz,
and
R.O.Donis
(2011).
Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses.
|
| |
Virology,
413,
139-147.
|
 |
|
|
|
|
 |
A.L.Balish,
C.T.Davis,
M.D.Saad,
N.El-Sayed,
H.Esmat,
J.A.Tjaden,
K.C.Earhart,
L.E.Ahmed,
M.Abd El-Halem,
A.H.Ali,
S.A.Nassif,
E.A.El-Ebiary,
M.Taha,
M.M.Aly,
A.Arafa,
E.O'Neill,
X.Xiyan,
N.J.Cox,
R.O.Donis,
and
A.I.Klimov
(2010).
Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt.
|
| |
Avian Dis,
54,
329-334.
|
 |
|
|
|
|
 |
A.S.Abdel-Moneim,
A.E.Abdel-Ghany,
and
S.A.Shany
(2010).
Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys.
|
| |
J Biomed Sci,
17,
25.
|
 |
|
|
|
|
 |
B.Mänz,
M.Matrosovich,
N.Bovin,
and
M.Schwemmle
(2010).
A polymorphism in the hemagglutinin of the human isolate of a highly pathogenic H5N1 influenza virus determines organ tropism in mice.
|
| |
J Virol,
84,
8316-8321.
|
 |
|
|
|
|
 |
F.He,
R.D.Soejoedono,
S.Murtini,
M.Goutama,
and
J.Kwang
(2010).
Complementary monoclonal antibody-based dot ELISA for universal detection of H5 avian influenza virus.
|
| |
BMC Microbiol,
10,
330.
|
 |
|
|
|
|
 |
H.Achdout,
T.Meningher,
S.Hirsh,
A.Glasner,
Y.Bar-On,
C.Gur,
A.Porgador,
M.Mendelson,
M.Mandelboim,
and
O.Mandelboim
(2010).
Killing of avian and Swine influenza virus by natural killer cells.
|
| |
J Virol,
84,
3993-4001.
|
 |
|
|
|
|
 |
H.L.Oh,
S.Akerström,
S.Shen,
S.Bereczky,
H.Karlberg,
J.Klingström,
S.K.Lal,
A.Mirazimi,
and
Y.J.Tan
(2010).
An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses.
|
| |
J Virol,
84,
8275-8286.
|
 |
|
|
|
|
 |
H.M.Weingartl
(2010).
Did the 2009 pandemic influenza virus originate in humans?
|
| |
Future Microbiol,
5,
989-991.
|
 |
|
|
|
|
 |
H.M.Yassine,
C.W.Lee,
R.Gourapura,
and
Y.M.Saif
(2010).
Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors.
|
| |
Anim Health Res Rev,
11,
53-72.
|
 |
|
|
|
|
 |
H.M.Yassine,
M.Khatri,
C.W.Lee,
and
Y.M.Saif
(2010).
Characterization of an H3N2 triple reassortant influenza virus with a mutation at the receptor binding domain (D190A) that occurred upon virus transmission from turkeys to pigs.
|
| |
Virol J,
7,
258.
|
 |
|
|
|
|
 |
H.Yang,
L.M.Chen,
P.J.Carney,
R.O.Donis,
and
J.Stevens
(2010).
Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site.
|
| |
PLoS Pathog,
6,
e1001081.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Yang,
P.Carney,
and
J.Stevens
(2010).
Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin.
|
| |
PLoS Curr,
2,
RRN1152.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.A.Rudneva,
A.A.Kushch,
O.V.Masalova,
T.A.Timofeeva,
R.R.Klimova,
A.A.Shilov,
A.V.Ignatieva,
P.S.Krylov,
and
N.V.Kaverin
(2010).
Antigenic epitopes in the hemagglutinin of Qinghai-type influenza H5N1 virus.
|
| |
Viral Immunol,
23,
181-187.
|
 |
|
|
|
|
 |
J.Stevens,
L.M.Chen,
P.J.Carney,
R.Garten,
A.Foust,
J.Le,
B.A.Pokorny,
R.Manojkumar,
J.Silverman,
R.Devis,
K.Rhea,
X.Xu,
D.J.Bucher,
J.C.Paulson,
J.Paulson,
N.J.Cox,
A.Klimov,
and
R.O.Donis
(2010).
Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs.
|
| |
J Virol,
84,
8287-8299.
|
 |
|
|
|
|
 |
K.J.Vandegrift,
S.H.Sokolow,
P.Daszak,
and
A.M.Kilpatrick
(2010).
Ecology of avian influenza viruses in a changing world.
|
| |
Ann N Y Acad Sci,
1195,
113-128.
|
 |
|
|
|
|
 |
K.Viswanathan,
A.Chandrasekaran,
A.Srinivasan,
R.Raman,
V.Sasisekharan,
and
R.Sasisekharan
(2010).
Glycans as receptors for influenza pathogenesis.
|
| |
Glycoconj J,
27,
561-570.
|
 |
|
|
|
|
 |
M.L.Reed,
O.A.Bridges,
P.Seiler,
J.K.Kim,
H.L.Yen,
R.Salomon,
E.A.Govorkova,
R.G.Webster,
and
C.J.Russell
(2010).
The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks.
|
| |
J Virol,
84,
1527-1535.
|
 |
|
|
|
|
 |
N.Parera Pera,
H.M.Branderhorst,
R.Kooij,
C.Maierhofer,
M.van der Kaaden,
R.M.Liskamp,
V.Wittmann,
R.Ruijtenbeek,
and
R.J.Pieters
(2010).
Rapid screening of lectins for multivalency effects with a glycodendrimer microarray.
|
| |
Chembiochem,
11,
1896-1904.
|
 |
|
|
|
|
 |
P.J.Carney,
A.S.Lipatov,
A.S.Monto,
R.O.Donis,
and
J.Stevens
(2010).
Flexible label-free quantitative assay for antibodies to influenza virus hemagglutinins.
|
| |
Clin Vaccine Immunol,
17,
1407-1416.
|
 |
|
|
|
|
 |
R.Xu,
R.McBride,
J.C.Paulson,
C.F.Basler,
and
I.A.Wilson
(2010).
Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic.
|
| |
J Virol,
84,
1715-1721.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Chutinimitkul,
D.van Riel,
V.J.Munster,
J.M.van den Brand,
G.F.Rimmelzwaan,
T.Kuiken,
A.D.Osterhaus,
R.A.Fouchier,
and
E.de Wit
(2010).
In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity.
|
| |
J Virol,
84,
6825-6833.
|
 |
|
|
|
|
 |
S.J.Gamblin,
and
J.J.Skehel
(2010).
Influenza hemagglutinin and neuraminidase membrane glycoproteins.
|
| |
J Biol Chem,
285,
28403-28409.
|
 |
|
|
|
|
 |
S.Nagarajan,
C.Tosh,
H.V.Murugkar,
G.Venkatesh,
M.Katare,
R.Jain,
P.Behera,
R.Khandia,
S.Tripathi,
D.D.Kulkarni,
and
S.C.Dubey
(2010).
Isolation and molecular characterization of a H5N1 virus isolated from a Jungle crow (Corvus macrohynchos) in India.
|
| |
Virus Genes,
41,
30-36.
|
 |
|
|
|
|
 |
S.R.Das,
P.Puigbò,
S.E.Hensley,
D.E.Hurt,
J.R.Bennink,
and
J.W.Yewdell
(2010).
Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain.
|
| |
PLoS Pathog,
6,
e1001211.
|
 |
|
|
|
|
 |
S.Serna,
J.Etxebarria,
N.Ruiz,
M.Martin-Lomas,
and
N.C.Reichardt
(2010).
Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation.
|
| |
Chemistry,
16,
13163-13175.
|
 |
|
|
|
|
 |
T.Merry,
and
S.Astrautsova
(2010).
Alternative approaches to antiviral treatments: focusing on glycosylation as a target for antiviral therapy.
|
| |
Biotechnol Appl Biochem,
56,
103-109.
|
 |
|
|
|
|
 |
W.M.Jiang,
S.Liu,
J.Chen,
G.Y.Hou,
J.P.Li,
Y.F.Cao,
Q.Y.Zhuang,
Y.Li,
B.X.Huang,
and
J.M.Chen
(2010).
Molecular epidemiological surveys of H5 subtype highly pathogenic avian influenza viruses in poultry in China during 2007-2009.
|
| |
J Gen Virol,
91,
2491-2496.
|
 |
|
|
|
|
 |
W.Wang,
B.Lu,
H.Zhou,
A.L.Suguitan,
X.Cheng,
K.Subbarao,
G.Kemble,
and
H.Jin
(2010).
Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets.
|
| |
J Virol,
84,
6570-6577.
|
 |
|
|
|
|
 |
Y.Berhane,
M.Leith,
C.Embury-Hyatt,
J.Neufeld,
S.Babiuk,
T.Hisanaga,
H.Kehler,
K.Hooper-McGrevy,
and
J.Pasick
(2010).
Studying possible cross-protection of Canada geese preexposed to North American low pathogenicity avian influenza virus strains (H3N8, H4N6, and H5N2) against an H5N1 highly pathogenic avian influenza challenge.
|
| |
Avian Dis,
54,
548-554.
|
 |
|
|
|
|
 |
Y.Monteerarat,
O.Suptawiwat,
C.Boonarkart,
M.Uiprasertkul,
P.Auewarakul,
and
V.Viprakasit
(2010).
Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase.
|
| |
Arch Virol,
155,
889-893.
|
 |
|
|
|
|
 |
Y.Piwpankaew,
Y.Monteerarat,
O.Suptawiwat,
P.Puthavathana,
M.Uipresertkul,
and
P.Auewarakul
(2010).
Distribution of viral RNA, sialic acid receptor, and pathology in H5N1 avian influenza patients.
|
| |
APMIS,
118,
895-902.
|
 |
|
|
|
|
 |
Y.Sun,
J.Liu,
M.Yang,
F.Gao,
J.Zhou,
Y.Kitamura,
B.Gao,
P.Tien,
Y.Shu,
A.Iwamoto,
Z.Chen,
and
G.F.Gao
(2010).
Identification and structural definition of H5-specific CTL epitopes restricted by HLA-A*0201 derived from the H5N1 subtype of influenza A viruses.
|
| |
J Gen Virol,
91,
919-930.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Sun,
Y.Shi,
W.Zhang,
Q.Li,
D.Liu,
C.Vavricka,
J.Yan,
and
G.F.Gao
(2010).
In silico characterization of the functional and structural modules of the hemagglutinin protein from the swine-origin influenza virus A (H1N1)-2009.
|
| |
Sci China Life Sci,
53,
633-642.
|
 |
|
|
|
|
 |
A.C.Hurt,
J.K.Holien,
and
I.G.Barr
(2009).
In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses.
|
| |
Antimicrob Agents Chemother,
53,
4433-4440.
|
 |
|
|
|
|
 |
A.C.Mishra,
S.S.Cherian,
A.K.Chakrabarti,
S.D.Pawar,
S.M.Jadhav,
B.Pal,
S.Raut,
S.Koratkar,
and
S.S.Kode
(2009).
A unique influenza A (H5N1) virus causing a focal poultry outbreak in 2007 in Manipur, India.
|
| |
Virol J,
6,
26.
|
 |
|
|
|
|
 |
A.K.Chakrabarti,
S.D.Pawar,
S.S.Cherian,
S.S.Koratkar,
S.M.Jadhav,
B.Pal,
S.Raut,
V.Thite,
S.S.Kode,
S.S.Keng,
B.J.Payyapilly,
J.Mullick,
and
A.C.Mishra
(2009).
Characterization of the influenza A H5N1 viruses of the 2008-09 outbreaks in India reveals a third introduction and possible endemicity.
|
| |
PLoS One,
4,
e7846.
|
 |
|
|
|
|
 |
A.Suksatu,
W.Sangsawad,
A.Thitithanyanont,
N.Smittipat,
M.M.Fukuda,
and
S.Ubol
(2009).
Characteristics of stork feces-derived H5N1 viruses that are preferentially transmitted to primary human airway epithelial cells.
|
| |
Microbiol Immunol,
53,
675-684.
|
 |
|
|
|
|
 |
A.Varki
(2009).
Multiple changes in sialic acid biology during human evolution.
|
| |
Glycoconj J,
26,
231-245.
|
 |
|
|
|
|
 |
C.C.Wang,
J.R.Chen,
Y.C.Tseng,
C.H.Hsu,
Y.F.Hung,
S.W.Chen,
C.M.Chen,
K.H.Khoo,
T.J.Cheng,
Y.S.Cheng,
J.T.Jan,
C.Y.Wu,
C.Ma,
and
C.H.Wong
(2009).
Glycans on influenza hemagglutinin affect receptor binding and immune response.
|
| |
Proc Natl Acad Sci U S A,
106,
18137-18142.
|
 |
|
|
|
|
 |
C.Y.Wu,
P.H.Liang,
and
C.H.Wong
(2009).
New development of glycan arrays.
|
| |
Org Biomol Chem,
7,
2247-2254.
|
 |
|
|
|
|
 |
D.C.Ekiert,
G.Bhabha,
M.A.Elsliger,
R.H.Friesen,
M.Jongeneelen,
M.Throsby,
J.Goudsmit,
and
I.A.Wilson
(2009).
Antibody recognition of a highly conserved influenza virus epitope.
|
| |
Science,
324,
246-251.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Liu,
X.Liu,
J.Yan,
W.J.Liu,
and
G.F.Gao
(2009).
Interspecies transmission and host restriction of avian H5N1 influenza virus.
|
| |
Sci China C Life Sci,
52,
428-438.
|
 |
|
|
|
|
 |
D.M.Tscherne,
and
A.García-Sastre
(2009).
Recent strategies to identify broadly neutralizing antibodies against influenza A virus.
|
| |
F1000 Biol Rep,
1,
0.
|
 |
|
|
|
|
 |
D.Xu,
E.I.Newhouse,
R.E.Amaro,
H.C.Pao,
L.S.Cheng,
P.R.Markwick,
J.A.McCammon,
W.W.Li,
and
P.W.Arzberger
(2009).
Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective.
|
| |
J Mol Biol,
387,
465-491.
|
 |
|
|
|
|
 |
E.I.Newhouse,
D.Xu,
P.R.Markwick,
R.E.Amaro,
H.C.Pao,
K.J.Wu,
M.Alam,
J.A.McCammon,
and
W.W.Li
(2009).
Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective.
|
| |
J Am Chem Soc,
131,
17430-17442.
|
 |
|
|
|
|
 |
E.J.Dunham,
V.G.Dugan,
E.K.Kaser,
S.E.Perkins,
I.H.Brown,
E.C.Holmes,
and
J.K.Taubenberger
(2009).
Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses.
|
| |
J Virol,
83,
5485-5494.
|
 |
|
|
|
|
 |
G.B.Triana-Baltzer,
L.V.Gubareva,
J.M.Nicholls,
M.B.Pearce,
V.P.Mishin,
J.A.Belser,
L.M.Chen,
R.W.Chan,
M.C.Chan,
M.Hedlund,
J.L.Larson,
R.B.Moss,
J.M.Katz,
T.M.Tumpey,
and
F.Fang
(2009).
Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein.
|
| |
PLoS One,
4,
e7788.
|
 |
|
|
|
|
 |
G.Cattoli,
I.Monne,
A.Fusaro,
T.M.Joannis,
L.H.Lombin,
M.M.Aly,
A.S.Arafa,
K.M.Sturm-Ramirez,
E.Couacy-Hymann,
J.A.Awuni,
K.B.Batawui,
K.A.Awoume,
G.L.Aplogan,
A.Sow,
A.C.Ngangnou,
I.M.El Nasri Hamza,
D.Gamatié,
G.Dauphin,
J.M.Domenech,
and
I.Capua
(2009).
Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates.
|
| |
PLoS ONE,
4,
e4842.
|
 |
|
|
|
|
 |
G.J.Smith,
D.Vijaykrishna,
T.M.Ellis,
K.C.Dyrting,
Y.H.Leung,
J.Bahl,
C.W.Wong,
H.Kai,
M.K.Chow,
L.Duan,
A.S.Chan,
L.J.Zhang,
H.Chen,
G.S.Luk,
J.S.Peiris,
and
Y.Guan
(2009).
Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004-2008.
|
| |
Emerg Infect Dis,
15,
402-407.
|
 |
|
|
|
|
 |
G.Neumann,
T.Noda,
and
Y.Kawaoka
(2009).
Emergence and pandemic potential of swine-origin H1N1 influenza virus.
|
| |
Nature,
459,
931-939.
|
 |
|
|
|
|
 |
H.L.Yen,
J.R.Aldridge,
A.C.Boon,
N.A.Ilyushina,
R.Salomon,
D.J.Hulse-Post,
H.Marjuki,
J.Franks,
D.A.Boltz,
D.Bush,
A.S.Lipatov,
R.J.Webby,
J.E.Rehg,
and
R.G.Webster
(2009).
Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread.
|
| |
Proc Natl Acad Sci U S A,
106,
286-291.
|
 |
|
|
|
|
 |
H.Miller-Podraza,
K.Weikkolainen,
T.Larsson,
P.Linde,
J.Helin,
J.Natunen,
and
K.A.Karlsson
(2009).
Helicobacter pylori binding to new glycans based on N-acetyllactosamine.
|
| |
Glycobiology,
19,
399-407.
|
 |
|
|
|
|
 |
H.R.Haghighi,
L.R.Read,
S.M.Haeryfar,
S.Behboudi,
and
S.Sharif
(2009).
Identification of a dual-specific T cell epitope of the hemagglutinin antigen of an h5 avian influenza virus in chickens.
|
| |
PLoS One,
4,
e7772.
|
 |
|
|
|
|
 |
H.T.Ho,
H.L.Qian,
F.He,
T.Meng,
M.Szyporta,
N.Prabhu,
M.Prabakaran,
K.P.Chan,
and
J.Kwang
(2009).
Rapid detection of H5N1 subtype influenza viruses by antigen capture enzyme-linked immunosorbent assay using H5- and N1-specific monoclonal antibodies.
|
| |
Clin Vaccine Immunol,
16,
726-732.
|
 |
|
|
|
|
 |
H.Zhang
(2009).
Tissue and host tropism of influenza viruses: importance of quantitative analysis.
|
| |
Sci China C Life Sci,
52,
1101-1110.
|
 |
|
|
|
|
 |
J.A.Belser,
D.A.Wadford,
J.Xu,
J.M.Katz,
and
T.M.Tumpey
(2009).
Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract.
|
| |
J Virol,
83,
7075-7084.
|
 |
|
|
|
|
 |
J.A.Greenbaum,
M.F.Kotturi,
Y.Kim,
C.Oseroff,
K.Vaughan,
N.Salimi,
R.Vita,
J.Ponomarenko,
R.H.Scheuermann,
A.Sette,
and
B.Peters
(2009).
Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population.
|
| |
Proc Natl Acad Sci U S A,
106,
20365-20370.
|
 |
|
|
|
|
 |
J.Chen,
Z.Yang,
Q.Chen,
X.Liu,
F.Fang,
H.Chang,
D.Li,
and
Z.Chen
(2009).
Characterization of H5N1 influenza A viruses isolated from domestic green-winged teal.
|
| |
Virus Genes,
38,
66-73.
|
 |
|
|
|
|
 |
J.Dong,
Y.Matsuoka,
T.R.Maines,
D.E.Swayne,
E.O'Neill,
C.T.Davis,
N.Van-Hoven,
A.Balish,
H.J.Yu,
J.M.Katz,
A.Klimov,
N.Cox,
D.X.Li,
Y.Wang,
Y.J.Guo,
W.Z.Yang,
R.O.Donis,
and
Y.L.Shu
(2009).
Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production.
|
| |
Influenza Other Respi Viruses,
3,
287-295.
|
 |
|
|
|
|
 |
J.E.Lee,
M.L.Fusco,
and
E.Ollmann Saphire
(2009).
An efficient platform for screening expression and crystallization of glycoproteins produced in human cells.
|
| |
Nat Protoc,
4,
592-604.
|
 |
|
|
|
|
 |
J.Sui,
W.C.Hwang,
S.Perez,
G.Wei,
D.Aird,
L.M.Chen,
E.Santelli,
B.Stec,
G.Cadwell,
M.Ali,
H.Wan,
A.Murakami,
A.Yammanuru,
T.Han,
N.J.Cox,
L.A.Bankston,
R.O.Donis,
R.C.Liddington,
and
W.A.Marasco
(2009).
Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses.
|
| |
Nat Struct Mol Biol,
16,
265-273.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.W.Noah,
D.L.Noah,
and
S.Matalon
(2009).
Influenza exerts continued pressure in an era of modern medicine.
|
| |
Am J Respir Cell Mol Biol,
41,
3-7.
|
 |
|
|
|
|
 |
K.Chaichoune,
W.Wiriyarat,
A.Thitithanyanont,
R.Phonarknguen,
L.Sariya,
S.Suwanpakdee,
T.Noimor,
S.Chatsurachai,
P.Suriyaphol,
K.Ungchusak,
P.Ratanakorn,
R.G.Webster,
M.Thompson,
P.Auewarakul,
and
P.Puthavathana
(2009).
Indigenous sources of 2007-2008 H5N1 avian influenza outbreaks in Thailand.
|
| |
J Gen Virol,
90,
216-222.
|
 |
|
|
|
|
 |
L.A.Perrone,
A.Ahmad,
V.Veguilla,
X.Lu,
G.Smith,
J.M.Katz,
P.Pushko,
and
T.M.Tumpey
(2009).
Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge.
|
| |
J Virol,
83,
5726-5734.
|
 |
|
|
|
|
 |
L.G.Baum,
and
P.R.Crocker
(2009).
Glycoimmunology: ignore at your peril!
|
| |
Immunol Rev,
230,
5-8.
|
 |
|
|
|
|
 |
L.Qi,
J.C.Kash,
V.G.Dugan,
R.Wang,
G.Jin,
R.E.Cunningham,
and
J.K.Taubenberger
(2009).
Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis for mice.
|
| |
J Virol,
83,
3754-3761.
|
 |
|
|
|
|
 |
L.Sun,
X.Lu,
C.Li,
M.Wang,
Q.Liu,
Z.Li,
X.Hu,
J.Li,
F.Liu,
Q.Li,
J.A.Belser,
K.Hancock,
Y.Shu,
J.M.Katz,
M.Liang,
and
D.Li
(2009).
Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.
|
| |
PLoS ONE,
4,
e5476.
|
 |
|
|
|
|
 |
M.A.Scull,
L.Gillim-Ross,
C.Santos,
K.L.Roberts,
E.Bordonali,
K.Subbarao,
W.S.Barclay,
and
R.J.Pickles
(2009).
Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways.
|
| |
PLoS Pathog,
5,
e1000424.
|
 |
|
|
|
|
 |
M.J.Jimenez-Dalmaroni,
N.Xiao,
A.L.Corper,
P.Verdino,
G.D.Ainge,
D.S.Larsen,
G.F.Painter,
P.M.Rudd,
R.A.Dwek,
K.Hoebe,
B.Beutler,
and
I.A.Wilson
(2009).
Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2.
|
| |
PLoS One,
4,
e7411.
|
 |
|
|
|
|
 |
M.L.Reed,
H.L.Yen,
R.M.DuBois,
O.A.Bridges,
R.Salomon,
R.G.Webster,
and
C.J.Russell
(2009).
Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein.
|
| |
J Virol,
83,
3568-3580.
|
 |
|
|
|
|
 |
M.Uttamchandani,
J.L.Neo,
B.N.Ong,
and
S.Moochhala
(2009).
Applications of microarrays in pathogen detection and biodefence.
|
| |
Trends Biotechnol,
27,
53-61.
|
 |
|
|
|
|
 |
N.Jongkon,
W.Mokmak,
D.Chuakheaw,
P.J.Shaw,
S.Tongsima,
and
C.Sangma
(2009).
Prediction of avian influenza A binding preference to human receptor using conformational analysis of receptor bound to hemagglutinin.
|
| |
BMC Genomics,
10,
S24.
|
 |
|
|
|
|
 |
N.Sriwilaijaroen,
S.Kondo,
H.Yagi,
P.Wilairat,
H.Hiramatsu,
M.Ito,
Y.Ito,
K.Kato,
and
Y.Suzuki
(2009).
Analysis of N-glycans in embryonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses.
|
| |
Glycoconj J,
26,
433-443.
|
 |
|
|
|
|
 |
P.Das,
J.Li,
A.K.Royyuru,
and
R.Zhou
(2009).
Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
|
| |
J Comput Chem,
30,
1654-1663.
|
 |
|
|
|
|
 |
P.M.Kasson,
D.L.Ensign,
and
V.S.Pande
(2009).
Combining molecular dynamics with bayesian analysis to predict and evaluate ligand-binding mutations in influenza hemagglutinin.
|
| |
J Am Chem Soc,
131,
11338-11340.
|
 |
|
|
|
|
 |
Q.Huang,
T.Korte,
P.S.Rachakonda,
E.W.Knapp,
and
A.Herrmann
(2009).
Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
|
| |
Proteins,
74,
291-303.
|
 |
|
|
|
|
 |
R.Salomon,
and
R.G.Webster
(2009).
The influenza virus enigma.
|
| |
Cell,
136,
402-410.
|
 |
|
|
|
|
 |
S.M.Rich,
F.H.Leendertz,
G.Xu,
M.LeBreton,
C.F.Djoko,
M.N.Aminake,
E.E.Takang,
J.L.Diffo,
B.L.Pike,
B.M.Rosenthal,
P.Formenty,
C.Boesch,
F.J.Ayala,
and
N.D.Wolfe
(2009).
The origin of malignant malaria.
|
| |
Proc Natl Acad Sci U S A,
106,
14902-14907.
|
 |
|
|
|
|
 |
T.M.Tumpey,
and
J.A.Belser
(2009).
Resurrected pandemic influenza viruses.
|
| |
Annu Rev Microbiol,
63,
79-98.
|
 |
|
|
|
|
 |
U.Neu,
T.Stehle,
and
W.J.Atwood
(2009).
The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry.
|
| |
Virology,
384,
389-399.
|
 |
|
|
|
|
 |
X.Qi,
X.Li,
P.Rider,
W.Fan,
H.Gu,
L.Xu,
Y.Yang,
S.Lu,
H.Wang,
and
F.Liu
(2009).
Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China.
|
| |
PLoS ONE,
4,
e4682.
|
 |
|
|
|
|
 |
Y.Gao,
Y.Zhang,
K.Shinya,
G.Deng,
Y.Jiang,
Z.Li,
Y.Guan,
G.Tian,
Y.Li,
J.Shi,
L.Liu,
X.Zeng,
Z.Bu,
X.Xia,
Y.Kawaoka,
and
H.Chen
(2009).
Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host.
|
| |
PLoS Pathog,
5,
e1000709.
|
 |
|
|
|
|
 |
Y.Guo,
E.Rumschlag-Booms,
J.Wang,
H.Xiao,
J.Yu,
J.Wang,
L.Guo,
G.F.Gao,
Y.Cao,
M.Caffrey,
and
L.Rong
(2009).
Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza.
|
| |
Virol J,
6,
39.
|
 |
|
|
|
|
 |
Y.Pei,
J.Swinton,
D.Ojkic,
and
S.Sharif
(2009).
Genetic characterization of two low pathogenic avian influenza virus H5N1 isolates from Ontario, Canada.
|
| |
Virus Genes,
38,
149-154.
|
 |
|
|
|
|
 |
Z.Xia,
G.Jin,
J.Zhu,
and
R.Zhou
(2009).
Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus.
|
| |
Bioinformatics,
25,
2309-2317.
|
 |
|
|
|
|
 |
A.Chandrasekaran,
A.Srinivasan,
R.Raman,
K.Viswanathan,
S.Raguram,
T.M.Tumpey,
V.Sasisekharan,
and
R.Sasisekharan
(2008).
Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin.
|
| |
Nat Biotechnol,
26,
107-113.
|
 |
|
|
|
|
 |
A.Gambotto,
S.M.Barratt-Boyes,
M.D.de Jong,
G.Neumann,
and
Y.Kawaoka
(2008).
Human infection with highly pathogenic H5N1 influenza virus.
|
| |
Lancet,
371,
1464-1475.
|
 |
|
|
|
|
 |
A.Imberty,
and
A.Varrot
(2008).
Microbial recognition of human cell surface glycoconjugates.
|
| |
Curr Opin Struct Biol,
18,
567-576.
|
 |
|
|
|
|
 |
A.Kongchanagul,
O.Suptawiwat,
P.Kanrai,
M.Uiprasertkul,
P.Puthavathana,
and
P.Auewarakul
(2008).
Positive selection at the receptor-binding site of haemagglutinin H5 in viral sequences derived from human tissues.
|
| |
J Gen Virol,
89,
1805-1810.
|
 |
|
|
|
|
 |
A.P.Lim,
C.E.Chan,
S.K.Wong,
A.H.Chan,
E.E.Ooi,
and
B.J.Hanson
(2008).
Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library.
|
| |
Virol J,
5,
130.
|
 |
|
|
|
|
 |
A.P.Lim,
S.K.Wong,
A.H.Chan,
C.E.Chan,
E.E.Ooi,
and
B.J.Hanson
(2008).
Epitope characterization of the protective monoclonal antibody VN04-2 shows broadly neutralizing activity against highly pathogenic H5N1.
|
| |
Virol J,
5,
80.
|
 |
|
|
|
|
 |
A.Srinivasan,
K.Viswanathan,
R.Raman,
A.Chandrasekaran,
S.Raguram,
T.M.Tumpey,
V.Sasisekharan,
and
R.Sasisekharan
(2008).
Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses.
|
| |
Proc Natl Acad Sci U S A,
105,
2800-2805.
|
 |
|
|
|
|
 |
A.Varki
(2008).
Sialic acids in human health and disease.
|
| |
Trends Mol Med,
14,
351-360.
|
 |
|
|
|
|
 |
C.A.Bewley
(2008).
Illuminating the switch in influenza viruses.
|
| |
Nat Biotechnol,
26,
60-62.
|
 |
|
|
|
|
 |
C.C.Wang,
Y.L.Huang,
C.T.Ren,
C.W.Lin,
J.T.Hung,
J.C.Yu,
A.L.Yu,
C.Y.Wu,
and
C.H.Wong
(2008).
Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer.
|
| |
Proc Natl Acad Sci U S A,
105,
11661-11666.
|
 |
|
|
|
|
 |
C.Gondran,
M.P.Dubois,
S.Fort,
S.Cosnier,
and
S.Szunerits
(2008).
Detection of carbohydrate-binding proteins by oligosaccharide-modified polypyrrole interfaces using electrochemical surface plasmon resonance.
|
| |
Analyst,
133,
206-212.
|
 |
|
|
|
|
 |
C.J.Wei,
L.Xu,
W.P.Kong,
W.Shi,
K.Canis,
J.Stevens,
Z.Y.Yang,
A.Dell,
S.M.Haslam,
I.A.Wilson,
and
G.J.Nabel
(2008).
Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus.
|
| |
J Virol,
82,
6200-6208.
|
 |
|
|
|
|
 |
C.Korteweg,
and
J.Gu
(2008).
Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans.
|
| |
Am J Pathol,
172,
1155-1170.
|
 |
|
|
|
|
 |
E.de Wit,
Y.Kawaoka,
M.D.de Jong,
and
R.A.Fouchier
(2008).
Pathogenicity of highly pathogenic avian influenza virus in mammals.
|
| |
Vaccine,
26,
D54-D58.
|
 |
|
|
|
|
 |
H.Wan,
E.M.Sorrell,
H.Song,
M.J.Hossain,
G.Ramirez-Nieto,
I.Monne,
J.Stevens,
G.Cattoli,
I.Capua,
L.M.Chen,
R.O.Donis,
J.Busch,
J.C.Paulson,
C.Brockwell,
R.Webby,
J.Blanco,
M.Q.Al-Natour,
and
D.R.Perez
(2008).
Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential.
|
| |
PLoS ONE,
3,
e2923.
|
 |
|
|
|
|
 |
H.Wang,
Z.Feng,
Y.Shu,
H.Yu,
L.Zhou,
R.Zu,
Y.Huai,
J.Dong,
C.Bao,
L.Wen,
H.Wang,
P.Yang,
W.Zhao,
L.Dong,
M.Zhou,
Q.Liao,
H.Yang,
M.Wang,
X.Lu,
Z.Shi,
W.Wang,
L.Gu,
F.Zhu,
Q.Li,
W.Yin,
W.Yang,
D.Li,
T.M.Uyeki,
and
Y.Wang
(2008).
Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China.
|
| |
Lancet,
371,
1427-1434.
|
 |
|
|
|
|
 |
J.A.Belser,
O.Blixt,
L.M.Chen,
C.Pappas,
T.R.Maines,
N.Van Hoeven,
R.Donis,
J.Busch,
R.McBride,
J.C.Paulson,
J.M.Katz,
and
T.M.Tumpey
(2008).
Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility.
|
| |
Proc Natl Acad Sci U S A,
105,
7558-7563.
|
 |
|
|
|
|
 |
J.M.Nicholls,
R.W.Chan,
R.J.Russell,
G.M.Air,
and
J.S.Peiris
(2008).
Evolving complexities of influenza virus and its receptors.
|
| |
Trends Microbiol,
16,
149-157.
|
 |
|
|
|
|
 |
J.Meisner,
K.J.Szretter,
K.C.Bradley,
W.A.Langley,
Z.N.Li,
B.J.Lee,
S.Thoennes,
J.Martin,
J.J.Skehel,
R.J.Russell,
J.M.Katz,
and
D.A.Steinhauer
(2008).
Infectivity studies of influenza virus hemagglutinin receptor binding site mutants in mice.
|
| |
J Virol,
82,
5079-5083.
|
 |
|
|
|
|
 |
J.Stevens,
O.Blixt,
L.M.Chen,
R.O.Donis,
J.C.Paulson,
and
I.A.Wilson
(2008).
Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity.
|
| |
J Mol Biol,
381,
1382-1394.
|
 |
|
|
|
|
 |
J.Wang,
D.Vijaykrishna,
L.Duan,
J.Bahl,
J.X.Zhang,
R.G.Webster,
J.S.Peiris,
H.Chen,
G.J.Smith,
and
Y.Guan
(2008).
Identification of the progenitors of Indonesian and Vietnamese avian influenza A (H5N1) viruses from southern China.
|
| |
J Virol,
82,
3405-3414.
|
 |
|
|
|
|
 |
K.I.Hidari,
T.Murata,
K.Yoshida,
Y.Takahashi,
Y.H.Minamijima,
Y.Miwa,
S.Adachi,
M.Ogata,
T.Usui,
Y.Suzuki,
and
T.Suzuki
(2008).
Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection.
|
| |
Glycobiology,
18,
779-788.
|
 |
|
|
|
|
 |
K.L.Hartshorn,
R.Webby,
M.R.White,
T.Tecle,
C.Pan,
S.Boucher,
R.J.Moreland,
E.C.Crouch,
and
R.K.Scheule
(2008).
Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D.
|
| |
Respir Res,
9,
65.
|
 |
|
|
|
|
 |
K.Ray,
V.A.Potdar,
S.S.Cherian,
S.D.Pawar,
S.M.Jadhav,
S.R.Waregaonkar,
A.A.Joshi,
and
A.C.Mishra
(2008).
Characterization of the complete genome of influenza A (H5N1) virus isolated during the 2006 outbreak in poultry in India.
|
| |
Virus Genes,
36,
345-353.
|
 |
|
|
|
|
 |
L.A.Perrone,
J.K.Plowden,
A.García-Sastre,
J.M.Katz,
and
T.M.Tumpey
(2008).
H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice.
|
| |
PLoS Pathog,
4,
e1000115.
|
 |
|
|
|
|
 |
L.M.Chen,
C.T.Davis,
H.Zhou,
N.J.Cox,
and
R.O.Donis
(2008).
Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses.
|
| |
PLoS Pathog,
4,
e1000072.
|
 |
|
|
|
|
 |
M.B.Kerby,
S.Freeman,
K.Prachanronarong,
A.W.Artenstein,
S.M.Opal,
and
A.Tripathi
(2008).
Direct sequence detection of structured h5 influenza viral RNA.
|
| |
J Mol Diagn,
10,
225-235.
|
 |
|
|
|
|
 |
M.L.Zupancic,
M.Frieman,
D.Smith,
R.A.Alvarez,
R.D.Cummings,
and
B.P.Cormack
(2008).
Glycan microarray analysis of Candida glabrata adhesin ligand specificity.
|
| |
Mol Microbiol,
68,
547-559.
|
 |
|
|
|
|
 |
M.von Itzstein
(2008).
Disease-associated carbohydrate-recognising proteins and structure-based inhibitor design.
|
| |
Curr Opin Struct Biol,
18,
558-566.
|
 |
|
|
|
|
 |
M.von Itzstein
(2008).
Avian influenza virus, a very sticky situation.
|
| |
Curr Opin Chem Biol,
12,
102-108.
|
 |
|
|
|
|
 |
N.A.Ilyushina,
E.A.Govorkova,
T.E.Gray,
N.V.Bovin,
and
R.G.Webster
(2008).
Human-like receptor specificity does not affect the neuraminidase-inhibitor susceptibility of H5N1 influenza viruses.
|
| |
PLoS Pathog,
4,
e1000043.
|
 |
|
|
|
|
 |
P.Decha,
T.Rungrotmongkol,
P.Intharathep,
M.Malaisree,
O.Aruksakunwong,
C.Laohpongspaisan,
V.Parasuk,
P.Sompornpisut,
S.Pianwanit,
S.Kokpol,
and
S.Hannongbua
(2008).
Source of high pathogenicity of an avian influenza virus H5N1: why H5 is better cleaved by furin.
|
| |
Biophys J,
95,
128-134.
|
 |
|
|
|
|
 |
P.H.Liang,
C.Y.Wu,
W.A.Greenberg,
and
C.H.Wong
(2008).
Glycan arrays: biological and medical applications.
|
| |
Curr Opin Chem Biol,
12,
86-92.
|
 |
|
|
|
|
 |
Q.Wang,
F.Cheng,
M.Lu,
X.Tian,
and
J.Ma
(2008).
Crystal structure of unliganded influenza B virus hemagglutinin.
|
| |
J Virol,
82,
3011-3020.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.A.Trammell,
and
L.A.Toth
(2008).
Genetic susceptibility and resistance to influenza infection and disease in humans and mice.
|
| |
Expert Rev Mol Diagn,
8,
515-529.
|
 |
|
|
|
|
 |
S.L.Kosakovsky Pond,
A.F.Poon,
A.J.Leigh Brown,
and
S.D.Frost
(2008).
A maximum likelihood method for detecting directional evolution in protein sequences and its application to influenza A virus.
|
| |
Mol Biol Evol,
25,
1809-1824.
|
 |
|
|
|
|
 |
S.Lan,
L.McLay,
J.Aronson,
H.Ly,
and
Y.Liang
(2008).
Genome comparison of virulent and avirulent strains of the Pichinde arenavirus.
|
| |
Arch Virol,
153,
1241-1250.
|
 |
|
|
|
|
 |
S.Park,
M.R.Lee,
and
I.Shin
(2008).
Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes.
|
| |
Chem Commun (Camb),
(),
4389-4399.
|
 |
|
|
|
|
 |
T.Dung Nguyen,
T.Vinh Nguyen,
D.Vijaykrishna,
R.G.Webster,
Y.Guan,
J.S.Malik Peiris,
and
G.J.Smith
(2008).
Multiple sublineages of influenza A virus (H5N1), Vietnam, 2005-2007.
|
| |
Emerg Infect Dis,
14,
632-636.
|
 |
|
|
|
|
 |
T.Sawada,
T.Hashimoto,
H.Tokiwa,
T.Suzuki,
H.Nakano,
H.Ishida,
M.Kiso,
and
Y.Suzuki
(2008).
Ab initio fragment molecular orbital studies of influenza virus hemagglutinin-sialosaccharide complexes toward chemical clarification about the virus host range determination.
|
| |
Glycoconj J,
25,
805-815.
|
 |
|
|
|
|
 |
T.Sheahan,
B.Rockx,
E.Donaldson,
A.Sims,
R.Pickles,
D.Corti,
and
R.Baric
(2008).
Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium.
|
| |
J Virol,
82,
2274-2285.
|
 |
|
|
|
|
 |
T.T.Lam,
C.C.Hon,
O.G.Pybus,
S.L.Kosakovsky Pond,
R.T.Wong,
C.W.Yip,
F.Zeng,
and
F.C.Leung
(2008).
Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in Indonesia.
|
| |
PLoS Pathog,
4,
e1000130.
|
 |
|
|
|
|
 |
V.A.Evseenko,
K.A.Sharshov,
E.K.Bukin,
A.V.Zaykovskaya,
V.A.Ternovoy,
G.M.Ignatyev,
A.M.Shestopalov,
S.V.Netesov,
V.A.Shkurupiy,
and
I.G.Drozdov
(2008).
Pathogenesis of Infectious Disease of Mice Caused by H5N1 Avian Influenza Virus.
|
| |
Bull Exp Biol Med,
146,
766-769.
|
 |
|
|
|
|
 |
X.L.Guo,
L.Li,
D.Q.Wei,
Y.S.Zhu,
and
K.C.Chou
(2008).
Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin.
|
| |
Amino Acids,
35,
375-382.
|
 |
|
|
|
|
 |
X.Xu,
X.Zhu,
R.A.Dwek,
J.Stevens,
and
I.A.Wilson
(2008).
Structural characterization of the 1918 influenza virus H1N1 neuraminidase.
|
| |
J Virol,
82,
10493-10501.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Su,
H.Y.Yang,
B.J.Zhang,
H.L.Jia,
and
P.Tien
(2008).
Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells.
|
| |
Arch Virol,
153,
2253-2261.
|
 |
|
|
|
|
 |
A.C.Shih,
D.T.Lee,
C.L.Peng,
and
Y.W.Wu
(2007).
Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences.
|
| |
BMC Bioinformatics,
8,
63.
|
 |
|
|
|
|
 |
C.T.Campbell,
S.G.Sampathkumar,
and
K.J.Yarema
(2007).
Metabolic oligosaccharide engineering: perspectives, applications, and future directions.
|
| |
Mol Biosyst,
3,
187-194.
|
 |
|
|
|
|
 |
D.J.Vigerust,
K.B.Ulett,
K.L.Boyd,
J.Madsen,
S.Hawgood,
and
J.A.McCullers
(2007).
N-linked glycosylation attenuates H3N2 influenza viruses.
|
| |
J Virol,
81,
8593-8600.
|
 |
|
|
|
|
 |
E.Kaltgrad,
S.Sen Gupta,
S.Punna,
C.Y.Huang,
A.Chang,
C.H.Wong,
M.G.Finn,
and
O.Blixt
(2007).
Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold.
|
| |
Chembiochem,
8,
1455-1462.
|
 |
|
|
|
|
 |
E.Spackman,
D.E.Swayne,
D.L.Suarez,
D.A.Senne,
J.C.Pedersen,
M.L.Killian,
J.Pasick,
K.Handel,
S.P.Pillai,
C.W.Lee,
D.Stallknecht,
R.Slemons,
H.S.Ip,
and
T.Deliberto
(2007).
Characterization of low-pathogenicity H5N1 avian influenza viruses from North America.
|
| |
J Virol,
81,
11612-11619.
|
 |
|
|
|
|
 |
G.M.Conenello,
D.Zamarin,
L.A.Perrone,
T.Tumpey,
and
P.Palese
(2007).
A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence.
|
| |
PLoS Pathog,
3,
1414-1421.
|
 |
|
|
|
|
 |
J.A.Maynard,
R.Myhre,
and
B.Roy
(2007).
Microarrays in infection and immunity.
|
| |
Curr Opin Chem Biol,
11,
306-315.
|
 |
|
|
|
|
 |
J.D.Campbell
(2007).
Pandemic flu vaccine: are we doing enough?
|
| |
Clin Pharmacol Ther,
82,
633-635.
|
 |
|
|
|
|
 |
J.J.Zhou,
J.Fu,
D.Y.Fang,
H.J.Yan,
J.Tian,
J.M.Zhou,
J.P.Tao,
Y.Liang,
and
L.F.Jiang
(2007).
Molecular characterization of the surface glycoprotein genes of an H5N1 influenza virus isolated from a human in Guangdong, China.
|
| |
Arch Virol,
152,
1515-1521.
|
 |
|
|
|
|
 |
J.M.Nicholls,
M.C.Chan,
W.Y.Chan,
H.K.Wong,
C.Y.Cheung,
D.L.Kwong,
M.P.Wong,
W.H.Chui,
L.L.Poon,
S.W.Tsao,
Y.Guan,
and
J.S.Peiris
(2007).
Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract.
|
| |
Nat Med,
13,
147-149.
|
 |
|
|
|
|
 |
J.Pasick,
Y.Berhane,
C.Embury-Hyatt,
J.Copps,
H.Kehler,
K.Handel,
S.Babiuk,
K.Hooper-McGrevy,
Y.Li,
Q.Mai Le,
and
S.Lien Phuong
(2007).
Susceptibility of Canada Geese (Branta canadensis) to highly pathogenic avian influenza virus (H5N1).
|
| |
Emerg Infect Dis,
13,
1821-1827.
|
 |
|
|
|
|
 |
J.S.Peiris,
M.D.de Jong,
and
Y.Guan
(2007).
Avian influenza virus (H5N1): a threat to human health.
|
| |
Clin Microbiol Rev,
20,
243-267.
|
 |
|
|
|
|
 |
K.G.Mansfield
(2007).
Viral tropism and the pathogenesis of influenza in the Mammalian host.
|
| |
Am J Pathol,
171,
1089-1092.
|
 |
|
|
|
|
 |
K.Kumari,
S.Gulati,
D.F.Smith,
U.Gulati,
R.D.Cummings,
and
G.M.Air
(2007).
Receptor binding specificity of recent human H3N2 influenza viruses.
|
| |
Virol J,
4,
42.
|
 |
|
|
|
|
 |
M.Amonsen,
D.F.Smith,
R.D.Cummings,
and
G.M.Air
(2007).
Human parainfluenza viruses hPIV1 and hPIV3 bind oligosaccharides with alpha2-3-linked sialic acids that are distinct from those bound by H5 avian influenza virus hemagglutinin.
|
| |
J Virol,
81,
8341-8345.
|
 |
|
|
|
|
 |
M.Zambon
(2007).
Lessons from the 1918 influenza.
|
| |
Nat Biotechnol,
25,
433-434.
|
 |
|
|
|
|
 |
N.V.Kaverin,
I.A.Rudneva,
E.A.Govorkova,
T.A.Timofeeva,
A.A.Shilov,
K.S.Kochergin-Nikitsky,
P.S.Krylov,
and
R.G.Webster
(2007).
Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies.
|
| |
J Virol,
81,
12911-12917.
|
 |
|
|
|
|
 |
P.Auewarakul,
O.Suptawiwat,
A.Kongchanagul,
C.Sangma,
Y.Suzuki,
K.Ungchusak,
S.Louisirirotchanakul,
H.Lerdsamran,
P.Pooruk,
A.Thitithanyanont,
C.Pittayawonganon,
C.T.Guo,
H.Hiramatsu,
W.Jampangern,
S.Chunsutthiwat,
and
P.Puthavathana
(2007).
An avian influenza H5N1 virus that binds to a human-type receptor.
|
| |
J Virol,
81,
9950-9955.
|
 |
|
|
|
|
 |
P.H.Seeberger,
and
D.B.Werz
(2007).
Synthesis and medical applications of oligosaccharides.
|
| |
Nature,
446,
1046-1051.
|
 |
|
|
|
|
 |
Q.Wang,
X.Tian,
X.Chen,
and
J.Ma
(2007).
Structural basis for receptor specificity of influenza B virus hemagglutinin.
|
| |
Proc Natl Acad Sci U S A,
104,
16874-16879.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.G.Wallace,
H.Hodac,
R.H.Lathrop,
and
W.M.Fitch
(2007).
A statistical phylogeography of influenza A H5N1.
|
| |
Proc Natl Acad Sci U S A,
104,
4473-4478.
|
 |
|
|
|
|
 |
R.Rabadan,
and
H.Robins
(2007).
Evolution of the influenza a virus: some new advances.
|
| |
Evol Bioinform Online,
3,
299-307.
|
 |
|
|
|
|
 |
S.Hanashima,
and
P.H.Seeberger
(2007).
Total synthesis of sialylated glycans related to avian and human influenza virus infection.
|
| |
Chem Asian J,
2,
1447-1459.
|
 |
|
|
|
|
 |
S.Perk,
C.Banet-Noach,
N.Golender,
L.Simanov,
E.Rozenblut,
S.Nagar,
S.Pokamunski,
M.Pirak,
Y.Tendler,
M.García,
and
A.Panshin
(2007).
Molecular characterization of the glycoprotein genes of H5N1 influenza A viruses isolated in Israel and the Gaza Strip during 2006 outbreaks.
|
| |
Virus Genes,
35,
497-502.
|
 |
|
|
|
|
 |
T.J.Dickerson,
K.M.McKenzie,
A.S.Hoyt,
M.R.Wood,
K.D.Janda,
S.B.Brenner,
and
R.A.Lerner
(2007).
Phage escape libraries for checkmate analysis.
|
| |
Proc Natl Acad Sci U S A,
104,
12703-12708.
|
 |
|
|
|
|
 |
T.Korte,
K.Ludwig,
Q.Huang,
P.S.Rachakonda,
and
A.Herrmann
(2007).
Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration.
|
| |
Eur Biophys J,
36,
327-335.
|
 |
|
|
|
|
 |
T.Wollert,
B.Pasche,
M.Rochon,
S.Deppenmeier,
J.van den Heuvel,
A.D.Gruber,
D.W.Heinz,
A.Lengeling,
and
W.D.Schubert
(2007).
Extending the host range of Listeria monocytogenes by rational protein design.
|
| |
Cell,
129,
891-902.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.B.Aamir,
U.Wernery,
N.Ilyushina,
and
R.G.Webster
(2007).
Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003.
|
| |
Virology,
361,
45-55.
|
 |
|
|
|
|
 |
V.A.Evseenko,
E.K.Bukin,
A.V.Zaykovskaya,
K.A.Sharshov,
V.A.Ternovoi,
G.M.Ignatyev,
and
A.M.Shestopalov
(2007).
Experimental infection of H5N1 HPAI in BALB/c mice.
|
| |
Virol J,
4,
77.
|
 |
|
|
|
|
 |
Z.Pei,
H.Yu,
M.Theurer,
A.Waldén,
P.Nilsson,
M.Yan,
and
O.Ramström
(2007).
Photogenerated carbohydrate microarrays.
|
| |
Chembiochem,
8,
166-168.
|
 |
|
|
|
|
 |
Z.Su,
H.Xu,
and
J.Chen
(2007).
Avian influenza: should China be alarmed?
|
| |
Yonsei Med J,
48,
586-594.
|
 |
|
|
|
|
 |
Z.Y.Yang,
C.J.Wei,
W.P.Kong,
L.Wu,
L.Xu,
D.F.Smith,
and
G.J.Nabel
(2007).
Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity.
|
| |
Science,
317,
825-828.
|
 |
|
|
|
|
 |
G.J.Smith,
X.H.Fan,
J.Wang,
K.S.Li,
K.Qin,
J.X.Zhang,
D.Vijaykrishna,
C.L.Cheung,
K.Huang,
J.M.Rayner,
J.S.Peiris,
H.Chen,
R.G.Webster,
and
Y.Guan
(2006).
Emergence and predominance of an H5N1 influenza variant in China.
|
| |
Proc Natl Acad Sci U S A,
103,
16936-16941.
|
 |
|
|
|
|
 |
J.K.Taubenberger
(2006).
Influenza hemagglutinin attachment to target cells: 'birds do it, we do it...'
|
| |
Future Virol,
1,
415-418.
|
 |
|
|
|
|
 |
J.Stevens,
O.Blixt,
J.C.Paulson,
and
I.A.Wilson
(2006).
Glycan microarray technologies: tools to survey host specificity of influenza viruses.
|
| |
Nat Rev Microbiol,
4,
857-864.
|
 |
|
|
|
|
 |
M.A.Rameix-Welti,
F.Agou,
P.Buchy,
S.Mardy,
J.T.Aubin,
M.Véron,
S.van der Werf,
and
N.Naffakh
(2006).
Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir.
|
| |
Antimicrob Agents Chemother,
50,
3809-3815.
|
 |
|
|
|
|
 |
M.Li,
J.Liu,
X.Ran,
M.Fang,
J.Shi,
H.Qin,
J.M.Goh,
and
J.Song
(2006).
Resurrecting abandoned proteins with pure water: CD and NMR studies of protein fragments solubilized in salt-free water.
|
| |
Biophys J,
91,
4201-4209.
|
 |
|
|
|
|
 |
N.Pourmand,
L.Diamond,
R.Garten,
J.P.Erickson,
J.Kumm,
R.O.Donis,
and
R.W.Davis
(2006).
Rapid and highly informative diagnostic assay for H5N1 influenza viruses.
|
| |
PLoS ONE,
1,
e95.
|
 |
|
|
|
|
 |
S.Yamada,
Y.Suzuki,
T.Suzuki,
M.Q.Le,
C.A.Nidom,
Y.Sakai-Tagawa,
Y.Muramoto,
M.Ito,
M.Kiso,
T.Horimoto,
K.Shinya,
T.Sawada,
M.Kiso,
T.Usui,
T.Murata,
Y.Lin,
A.Hay,
L.F.Haire,
D.J.Stevens,
R.J.Russell,
S.J.Gamblin,
J.J.Skehel,
and
Y.Kawaoka
(2006).
Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors.
|
| |
Nature,
444,
378-382.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.R.Maines,
L.M.Chen,
Y.Matsuoka,
H.Chen,
T.Rowe,
J.Ortin,
A.Falcón,
T.H.Nguyen,
l.e. .Q.Mai,
E.R.Sedyaningsih,
S.Harun,
T.M.Tumpey,
R.O.Donis,
N.J.Cox,
K.Subbarao,
and
J.M.Katz
(2006).
Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model.
|
| |
Proc Natl Acad Sci U S A,
103,
12121-12126.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |