spacer
spacer

PDBsum entry 2bce

Go to PDB code: 
protein links
Hydrolase PDB id
2bce

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
532 a.a. *
Waters ×219
* Residue conservation analysis
PDB id:
2bce
Name: Hydrolase
Title: Cholesterol esterase from bos taurus
Structure: Cholesterol esterase. Chain: a. Synonym: bile salt activated lipase, bile salt stimulated lipase. Engineered: yes. Mutation: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913. Organ: pancreas. Expressed in: homo sapiens. Expression_system_taxid: 9606. Expression_system_cell_line: human embryonic kidney cells (hek)
Resolution:
1.60Å     R-factor:   0.211     R-free:   0.250
Authors: J.C.-H.Chen,L.J.W.Miercke,J.Krucinski,J.R.Starr,G.Saenz,X.Wang, C.A.Spilburg,L.G.Lange,J.L.Ellsworth,R.M.Stroud
Key ref:
J.C.Chen et al. (1998). Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation. Biochemistry, 37, 5107-5117. PubMed id: 9548741 DOI: 10.1021/bi972989g
Date:
28-Jan-98     Release date:   02-Feb-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P30122  (CEL_BOVIN) -  Bile salt-activated lipase (Fragment) from Bos taurus
Seq:
Struc:
 
Seq:
Struc:
597 a.a.
532 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 9 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: E.C.3.1.1.13  - sterol esterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a sterol ester + H2O = a sterol + a fatty acid + H+
sterol ester
+ H2O
= sterol
+ fatty acid
+ H(+)
   Enzyme class 3: E.C.3.1.1.3  - triacylglycerol lipase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a triacylglycerol + H2O = a diacylglycerol + a fatty acid + H+
triacylglycerol
+ H2O
= diacylglycerol
+ fatty acid
+ H(+)
   Enzyme class 4: E.C.3.1.1.6  - acetylesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: an acetyl ester + H2O = an aliphatic alcohol + acetate + H+
acetyl ester
+ H2O
= aliphatic alcohol
+ acetate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi972989g Biochemistry 37:5107-5117 (1998)
PubMed id: 9548741  
 
 
Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation.
J.C.Chen, L.J.Miercke, J.Krucinski, J.R.Starr, G.Saenz, X.Wang, C.A.Spilburg, L.G.Lange, J.L.Ellsworth, R.M.Stroud.
 
  ABSTRACT  
 
The structure of pancreatic cholesterol esterase, an enzyme that hydrolyzes a wide variety of dietary lipids, mediates the absorption of cholesterol esters, and is dependent on bile salts for optimal activity, is determined to 1.6 A resolution. A full-length construct, mutated to eliminate two N-linked glycosylation sites (N187Q/N361Q), was expressed in HEK 293 cells. Enzymatic activity assays show that the purified, recombinant, mutant enzyme has activity identical to that of the native, glycosylated enzyme purified from bovine pancreas. The mutant enzyme is monomeric and exhibits improved homogeneity which aided in the growth of well-diffracting crystals. Crystals of the mutant enzyme grew in space group C2, with the following cell dimensions: a = 100.42 A, b = 54.25 A, c = 106.34 A, and beta = 104.12 degrees, with a monomer in the asymmetric unit. The high-resolution crystal structure of bovine pancreatic cholesterol esterase (Rcryst = 21.1%; Rfree = 25.0% to 1.6 A resolution) shows an alpha-beta hydrolase fold with an unusual active site environment around the catalytic triad. The hydrophobic C terminus of the protein is lodged in the active site, diverting the oxyanion hole away from the productive binding site and the catalytic Ser194. The amphipathic, helical lid found in other triglyceride lipases is truncated in the structure of cholesterol esterase and therefore is not a salient feature of activation of this lipase. These two structural features, along with the bile salt-dependent activity of the enzyme, implicate a new mode of lipase activation.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21448788 M.C.Lin, S.J.Yeh, I.R.Chen, and G.Lin (2011).
Stereoselective inhibition of cholesterol esterase by enantiomers of exo- and endo-2-norbornyl-N-n-butylcarbamates.
  Protein J, 30, 220-227.  
19193735 S.G.Williams, and S.C.Lovell (2009).
The effect of sequence evolution on protein structural divergence.
  Mol Biol Evol, 26, 1055-1065.  
18499049 A.Maeda, T.Mizuno, M.Bunya, S.Sugihara, D.Nakayama, S.Tsunasawa, Y.Hirota, and A.Sugihara (2008).
Characterization of novel cholesterol esterase from Trichoderma sp. AS59 with high ability to synthesize steryl esters.
  J Biosci Bioeng, 105, 341-349.  
18063356 S.K.Arya, M.Datta, and B.D.Malhotra (2008).
Recent advances in cholesterol biosensor.
  Biosens Bioelectron, 23, 1083-1100.  
18478319 S.Y.Chiou, M.C.Lin, M.T.Hwang, H.G.Chang, and G.Lin (2008).
Benzene-di-N-substituted carbamates as conformationally constrained substrate analogs of cholesterol esterase.
  Protein J, 27, 276-282.  
16721659 G.Lin, S.Y.Chiou, B.C.Hwu, and C.W.Hsieh (2006).
Probing structure-function relationships of serine hydrolases and proteases with carbamate and thiocarbamate inhibitors.
  Protein J, 25, 33-43.  
16606609 S.R.Cheruku, Z.Xu, R.Dutia, P.Lobel, and J.Storch (2006).
Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport.
  J Biol Chem, 281, 31594-31604.  
16283542 G.Lin, W.C.Liao, and Z.H.Ku (2005).
Quantitative structure-activity relationships for the pre-steady state of Pseudomonas species lipase inhibitions by p-nirophenyl-N-substituted carbamates.
  Protein J, 24, 201-207.  
16010346 G.P.McGlacken, and I.J.Fairlamb (2005).
2-Pyrone natural products and mimetics: isolation, characterisation and biological activity.
  Nat Prod Rep, 22, 369-385.  
15819617 R.D.Hayward, R.J.Cain, E.J.McGhie, N.Phillips, M.J.Garner, and V.Koronakis (2005).
Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells.
  Mol Microbiol, 56, 590-603.  
16176589 S.Y.Chiou, C.Y.Lai, L.Y.Lin, and G.Lin (2005).
Probing stereoselective inhibition of the acyl binding site of cholesterol esterase with four diastereomers of 2'-N-alpha-methylbenzylcarbamyl-1, 1'-bi-2-naphthol.
  BMC Biochem, 6, 17.  
15265857 E.Aubert-Jousset, V.Sbarra, and D.Lombardo (2004).
Site-directed mutagenesis of the distal basic cluster of pancreatic bile salt-dependent lipase.
  J Biol Chem, 279, 39697-39704.  
15239056 P.F.Mugford, S.M.Lait, B.A.Keay, and R.J.Kazlauskas (2004).
Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg.
  Chembiochem, 5, 980-987.  
12591954 N.Friedland, H.L.Liou, P.Lobel, and A.M.Stock (2003).
Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease.
  Proc Natl Acad Sci U S A, 100, 2512-2517.
PDB code: 1nep
14635121 S.Balaji, S.Aruna, and N.Srinivasan (2003).
Tolerance to the substitution of buried apolar residues by charged residues in the homologous protein structures.
  Proteins, 53, 783-791.  
12506971 A.Sugihara, Y.Shimada, A.Nomura, T.Terai, M.Imayasu, Y.Nagai, T.Nagao, Y.Watanabe, and Y.Tominaga (2002).
Purification and characterization of a novel cholesterol esterase from Pseudomonas aeruginosa, with its application to cleaning lipid-stained contact lenses.
  Biosci Biotechnol Biochem, 66, 2347-2355.  
11933065 B.Reva, A.Finkelstein, and S.Topiol (2002).
Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV).
  Proteins, 47, 180-193.  
11967565 S.Bencharit, C.L.Morton, E.L.Howard-Williams, M.K.Danks, P.M.Potter, and M.R.Redinbo (2002).
Structural insights into CPT-11 activation by mammalian carboxylesterases.
  Nat Struct Biol, 9, 337-342.
PDB code: 1k4y
11846777 S.Lindquist, L.Bläckberg, and O.Hernell (2002).
Human bile salt-stimulated lipase has a high frequency of size variation due to a hypervariable region in exon 11.
  Eur J Biochem, 269, 759-767.  
11684695 X.Lu, S.Lin, C.C.Chang, and T.Y.Chang (2002).
Mutant acyl-coenzyme A:cholesterol acyltransferase 1 devoid of cysteine residues remains catalytically active.
  J Biol Chem, 277, 711-718.  
11092545 G.Lin, W.C.Liao, and S.Y.Chiou (2000).
Quantitative structure-activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-N-substituted carbamates.
  Bioorg Med Chem, 8, 2601-2607.  
10739926 R.L.Kingston, H.M.Baker, K.M.Loomes, L.Bläckberg, O.Hernell, and E.N.Baker (2000).
Crystallization and preliminary X-ray analysis of native and recombinant human bile-salt dependent lipase: strategies for improvement of diffraction quality.
  Acta Crystallogr D Biol Crystallogr, 56, 478-480.  
  11045623 S.Terzyan, C.S.Wang, D.Downs, B.Hunter, and X.C.Zhang (2000).
Crystal structure of the catalytic domain of human bile salt activated lipase.
  Protein Sci, 9, 1783-1790.
PDB code: 1f6w
10350625 G.Lin, C.T.Shieh, Y.C.Tsai, C.I.Hwang, C.P.Lu, and G.H.Chen (1999).
Structure-reactivity probes for active site shapes of cholesterol esterase by carbamate inhibitors.
  Biochim Biophys Acta, 1431, 500-511.  
10542055 K.M.Loomes, H.E.Senior, P.M.West, and A.M.Roberton (1999).
Functional protective role for mucin glycosylated repetitive domains.
  Eur J Biochem, 266, 105-111.  
10607665 M.Nardini, and B.W.Dijkstra (1999).
Alpha/beta hydrolase fold enzymes: the family keeps growing.
  Curr Opin Struct Biol, 9, 732-737.  
10404588 P.Heikinheimo, A.Goldman, C.Jeffries, and D.L.Ollis (1999).
Of barn owls and bankers: a lush variety of alpha/beta hydrolases.
  Structure, 7, R141-R146.  
10606038 T.Tsujita, M.Sumiyoshi, and H.Okuda (1999).
Wax ester-synthesizing activity of lipases.
  Lipids, 34, 1159-1166.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer