spacer
spacer

PDBsum entry 2acu

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
2acu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
315 a.a. *
Ligands
NAP
CIT
Waters ×142
* Residue conservation analysis
PDB id:
2acu
Name: Oxidoreductase
Title: Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and the crystal structure of the y48h mutant enzyme
Structure: Aldose reductase. Chain: a. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.76Å     R-factor:   0.187    
Authors: K.M.Bohren,C.E.Grimshaw,C.-J.Lai,K.H.Gabbay,G.A.Petsko,D.H.Harrison, D.Ringe
Key ref:
K.M.Bohren et al. (1994). Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry, 33, 2021-2032. PubMed id: 8117659 DOI: 10.1021/bi00174a007
Date:
15-Apr-94     Release date:   31-Jul-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P15121  (ALDR_HUMAN) -  Aldo-keto reductase family 1 member B1 from Homo sapiens
Seq:
Struc:
316 a.a.
315 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: E.C.1.1.1.21  - aldose reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. an alditol + NAD+ = an aldose + NADH + H+
2. an alditol + NADP+ = an aldose + NADPH + H+
alditol
+
NAD(+)
Bound ligand (Het Group name = NAP)
matches with 91.67% similarity
= aldose
+ NADH
+ H(+)
alditol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= aldose
+ NADPH
+ H(+)
   Enzyme class 2: E.C.1.1.1.300  - NADP-retinol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: all-trans-retinol + NADP+ = all-trans-retinal + NADPH + H+
all-trans-retinol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= all-trans-retinal
+ NADPH
+ H(+)
   Enzyme class 3: E.C.1.1.1.372  - D/L-glyceraldehyde reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. glycerol + NADP+ = L-glyceraldehyde + NADPH + H+
2. glycerol + NADP+ = D-glyceraldehyde + NADPH + H+
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= L-glyceraldehyde
+ NADPH
+ H(+)
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= D-glyceraldehyde
+ NADPH
+ H(+)
   Enzyme class 4: E.C.1.1.1.54  - allyl-alcohol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: allyl alcohol + NADP+ = acrolein + NADPH + H+
allyl alcohol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= acrolein
+ NADPH
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi00174a007 Biochemistry 33:2021-2032 (1994)
PubMed id: 8117659  
 
 
Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
K.M.Bohren, C.E.Grimshaw, C.J.Lai, D.H.Harrison, D.Ringe, G.A.Petsko, K.H.Gabbay.
 
  ABSTRACT  
 
The active site of human aldose reductase contains two residues, His110 and Tyr48, either of which could be the proton donor during catalysis. Tyr48 is a candidate since its hydroxyl group is in proximity to Lys77 and thus may have an abnormally low pKa value. To distinguish between these possibilities, we used site-directed mutagenesis to create the H110Q and H110A, the Y48F, Y48H, and Y48S, and the K77M mutant enzymes. The two His110 mutants resulted in a 1000-20,000-fold drop in kcat/Km, respectively, for the reduction of DL-glyceraldehyde at pH 7. The Y48F mutation caused total loss of activity, whereas the Y48H and Y48S mutants retained catalytic activity with kcat/Km reduced by 5 orders of magnitude. The K77M mutant is an inactive enzyme. Kinetic studies using xylose stereoisomers show that the wild-type enzyme distinguishes between D-xylose, L-xylose, and D-lyxose up to 150-fold better than the H110A or H110Q mutants. The His110 mutants do not effectively discriminate between these isomers (4-11-fold). The crystal structure of the Y48H mutant refined at 1.8-A resolution shows that the overall structure is not significantly different from the wild-type structure. Electron densities for the histidine side chain and a new water molecule fill the space occupied by Tyr48 in the wild-type enzyme. The water molecule is in hydrogen-bonding distance to the N zeta group of Lys77 and to the N epsilon of His48 and fills the space occupied by the hydroxyl group of tyrosine in the wild-type structure. These findings suggest that proton transfer is mediated in the Y48H mutant enzyme by the water molecule. The Y48H mutant shows large and equal primary deuterium isotope effects on kcat and kcat/Km (1.81 +/- 0.03), providing direct evidence for hydride transfer as the rate-determining step in this mutant. Deuterium solvent isotope effects indicate that the relative contribution of proton transfer to this step of the catalytic cascade is much less important for the Y48H mutant than for the wild-type enzyme [D2O(kcat/Km) = 1.06 +/- 0.02 and 4.73 +/- 0.23, respectively]. The kinetic and mutagenesis data, together with structural data, indicate that His 110 plays an important role in the orientation of substrates in the active site pocket, while Tyr48 is the proton donor during aldehyde reduction by aldose reductase.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21514701 A.M.Katsori, M.Chatzopoulou, K.Dimas, C.Kontogiorgis, A.Patsilinakos, T.Trangas, and D.Hadjipavlou-Litina (2011).
Curcumin analogues as possible anti-proliferative & anti-inflammatory agents.
  Eur J Med Chem, 46, 2722-2735.  
  21306562 N.Nagata, Y.Kusakari, Y.Fukunishi, T.Inoue, and Y.Urade (2011).
Catalytic mechanism of the primary human prostaglandin F2α synthase, aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H).
  FEBS J, 278, 1288-1298.  
21367494 X.Chen, Y.Yang, B.Ma, S.Zhang, M.He, D.Gui, S.Hussain, C.Jing, C.Zhu, Q.Yu, and Y.Liu (2011).
Design and synthesis of potent and selective aldose reductase inhibitors based on pyridylthiadiazine scaffold.
  Eur J Med Chem, 46, 1536-1544.  
20529366 D.H.Lee, Y.J.Lee, Y.W.Ryu, and J.H.Seo (2010).
Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110.
  Microb Cell Fact, 9, 43.  
19693930 G.A.Khoury, H.Fazelinia, J.W.Chin, R.J.Pantazes, P.C.Cirino, and C.D.Maranas (2009).
Computational design of Candida boidinii xylose reductase for altered cofactor specificity.
  Protein Sci, 18, 2125-2138.  
18453693 B.Guillot, C.Jelsch, A.Podjarny, and C.Lecomte (2008).
Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case.
  Acta Crystallogr D Biol Crystallogr, 64, 567-588.  
18250329 M.P.Blakeley, F.Ruiz, R.Cachau, I.Hazemann, F.Meilleur, A.Mitschler, S.Ginell, P.Afonine, O.N.Ventura, A.Cousido-Siah, M.Haertlein, A.Joachimiak, D.Myles, and A.Podjarny (2008).
Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.
  Proc Natl Acad Sci U S A, 105, 1844-1848.
PDB codes: 2qxw 2r24
18949601 O.A.Barski, S.M.Tipparaju, and A.Bhatnagar (2008).
The aldo-keto reductase superfamily and its role in drug metabolism and detoxification.
  Drug Metab Rev, 40, 553-624.  
18672894 S.M.Tipparaju, O.A.Barski, S.Srivastava, and A.Bhatnagar (2008).
Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel.
  Biochemistry, 47, 8840-8854.  
17505104 M.Biadene, I.Hazemann, A.Cousido, S.Ginell, A.Joachimiak, G.M.Sheldrick, A.Podjarny, and T.R.Schneider (2007).
The atomic resolution structure of human aldose reductase reveals that rearrangement of a bound ligand allows the opening of the safety-belt loop.
  Acta Crystallogr D Biol Crystallogr, 63, 665-672.
PDB code: 2j8t
17140678 Q.Chang, T.A.Griest, T.M.Harter, and J.M.Petrash (2007).
Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.
  Biochim Biophys Acta, 1773, 321-329.  
17537398 T.M.Penning, and J.E.Drury (2007).
Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms.
  Arch Biochem Biophys, 464, 241-250.  
17083960 J.M.Brownlee, E.Carlson, A.C.Milne, E.Pape, and D.H.Harrison (2006).
Structural and thermodynamic studies of simple aldose reductase-inhibitor complexes.
  Bioorg Chem, 34, 424-444.
PDB codes: 2ine 2inz 2ipw 2iq0 2iqd 2is7 2isf
15146478 E.I.Howard, R.Sanishvili, R.E.Cachau, A.Mitschler, B.Chevrier, P.Barth, V.Lamour, M.Van Zandt, E.Sibley, C.Bon, D.Moras, T.R.Schneider, A.Joachimiak, and A.Podjarny (2004).
Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A.
  Proteins, 55, 792-804.
PDB code: 1us0
14517983 G.Obmolova, A.Teplyakov, P.P.Khil, A.J.Howard, R.D.Camerini-Otero, and G.L.Gilliland (2003).
Crystal structure of the Escherichia coli Tas protein, an NADP(H)-dependent aldo-keto reductase.
  Proteins, 53, 323-325.
PDB code: 1lqa
14532079 J.K.Lee, B.S.Koo, and S.Y.Kim (2003).
Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
  Appl Environ Microbiol, 69, 6179-6188.  
12876313 S.D.Goldberg, W.Iannuccilli, T.Nguyen, J.Ju, and V.W.Cornish (2003).
Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis.
  Protein Sci, 12, 1633-1645.  
  12897449 U.Mura, M.Cappiello, P.G.Vilardo, I.Cecconi, M.Dal Monte, and A.Del Corso (2003).
Signalling potential and protein modifying ability of physiological thiols.
  Biofactors, 17, 279-285.  
11748234 C.R.Campomanes, K.I.Carroll, L.N.Manganas, M.E.Hershberger, B.Gong, D.E.Antonucci, K.J.Rhodes, and J.S.Trimmer (2002).
Kv beta subunit oxidoreductase activity and Kv1 potassium channel trafficking.
  J Biol Chem, 277, 8298-8305.  
12007809 E.Y.Jeong, I.S.Kim, and H.Lee (2002).
Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase.
  FEMS Microbiol Lett, 209, 223-228.  
12183464 I.Cecconi, A.Scaloni, G.Rastelli, M.Moroni, P.G.Vilardo, L.Costantino, M.Cappiello, D.Garland, D.Carper, J.M.Petrash, A.Del Corso, and U.Mura (2002).
Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism.
  J Biol Chem, 277, 42017-42027.  
11306077 B.Nidetzky, P.Mayr, W.Neuhauser, and M.Puchberger (2001).
Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis.
  Chem Biol Interact, 130, 583-595.  
11481678 E.Y.Jeong, C.Sopher, I.S.Kim, and H.Lee (2001).
Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
  Yeast, 18, 1081-1089.  
11306085 J.M.Petrash, B.S.Murthy, M.Young, K.Morris, L.Rikimaru, T.A.Griest, and T.Harter (2001).
Functional genomic studies of aldo-keto reductases.
  Chem Biol Interact, 130, 673-683.  
11606719 M.J.Ondrechen, J.G.Clifton, and D.Ringe (2001).
THEMATICS: a simple computational predictor of enzyme function from structure.
  Proc Natl Acad Sci U S A, 98, 12473-12478.  
11514561 V.Nahoum, A.Gangloff, P.Legrand, D.W.Zhu, L.Cantin, B.S.Zhorov, V.Luu-The, F.Labrie, R.Breton, and S.X.Lin (2001).
Structure of the human 3alpha-hydroxysteroid dehydrogenase type 3 in complex with testosterone and NADP at 1.25-A resolution.
  J Biol Chem, 276, 42091-42098.
PDB code: 1j96
10813827 J.Lamotte-Brasseur, A.Dubus, and R.C.Wade (2000).
pK(a) calculations for class C beta-lactamases: the role of Tyr-150.
  Proteins, 40, 23-28.  
10653632 J.M.Jez, J.L.Ferrer, M.E.Bowman, R.A.Dixon, and J.P.Noel (2000).
Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
  Biochemistry, 39, 890-902.
PDB codes: 1d6f 1d6h 1d6i
10651037 Q.Ye, D.Hyndman, X.Li, T.G.Flynn, and Z.Jia (2000).
Crystal structure of CHO reductase, a member of the aldo-keto reductase superfamily.
  Proteins, 38, 41-48.
PDB code: 1c9w
10820034 R.Rink, J.Kingma, J.H.Lutje Spelberg, and D.B.Janssen (2000).
Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter.
  Biochemistry, 39, 5600-5613.  
10737928 S.Khurana, G.Sanli, D.B.Powers, S.Anderson, and M.Blaber (2000).
Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases.
  Proteins, 39, 68-75.  
10771421 V.Calderone, B.Chevrier, M.Van Zandt, V.Lamour, E.Howard, A.Poterszman, P.Barth, A.Mitschler, J.Lu, D.M.Dvornik, G.Klebe, O.Kraemer, A.R.Moorman, D.Moras, and A.Podjarny (2000).
The structure of human aldose reductase bound to the inhibitor IDD384.
  Acta Crystallogr D Biol Crystallogr, 56, 536-540.
PDB codes: 1eko 1el3
10551851 A.M.Lefrançois-Martinez, C.Tournaire, A.Martinez, M.Berger, S.Daoudal, D.Tritsch, G.Veyssière, and C.Jean (1999).
Product of side-chain cleavage of cholesterol, isocaproaldehyde, is an endogenous specific substrate of mouse vas deferens protein, an aldose reductase-like protein in adrenocortical cells.
  J Biol Chem, 274, 32875-32880.  
10399921 J.M.Gulbis, S.Mann, and R.MacKinnon (1999).
Structure of a voltage-dependent K+ channel beta subunit.
  Cell, 97, 943-952.
PDB code: 1qrq
10090756 J.M.Hevel, S.A.Mills, and J.P.Klinman (1999).
Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
  Biochemistry, 38, 3683-3693.  
9918192 L.Costantino, G.Rastelli, P.Vianello, G.Cignarella, and D.Barlocco (1999).
Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches.
  Med Res Rev, 19, 3.  
11139842 P.J.Oates, and B.L.Mylari (1999).
Aldose reductase inhibitors: therapeutic implications for diabetic complications.
  Expert Opin Investig Drugs, 8, 2095-2119.  
10584067 P.Várnai, W.G.Richards, and P.D.Lyne (1999).
Modelling the catalytic reaction in human aldose reductase.
  Proteins, 37, 218-227.  
9867836 T.Suzuki, Y.Fujii, M.Miyano, L.Y.Chen, T.Takahashi, and K.Watanabe (1999).
cDNA cloning, expression, and mutagenesis study of liver-type prostaglandin F synthase.
  J Biol Chem, 274, 241-248.  
9521675 B.P.Schlegel, J.M.Jez, and T.M.Penning (1998).
Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
  Biochemistry, 37, 3538-3548.  
9692994 B.P.Schlegel, K.Ratnam, and T.M.Penning (1998).
Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
  Biochemistry, 37, 11003-11011.  
9565553 D.Cao, S.T.Fan, and S.S.Chung (1998).
Identification and characterization of a novel human aldose reductase-like gene.
  J Biol Chem, 273, 11429-11435.  
9730277 H.Lee (1998).
The structure and function of yeast xylose (aldose) reductases.
  Yeast, 14, 977-984.  
9657682 J.M.Jez, and T.M.Penning (1998).
Engineering steroid 5 beta-reductase activity into rat liver 3 alpha-hydroxysteroid dehydrogenase.
  Biochemistry, 37, 9695-9703.  
9695797 M.J.Crabbe, and D.Goode (1998).
Aldose reductase: a window to the treatment of diabetic complications?
  Prog Retin Eye Res, 17, 313-383.  
9920381 S.T.Kim, W.K.Huh, B.H.Lee, and S.O.Kang (1998).
D-arabinose dehydrogenase and its gene from Saccharomyces cerevisiae.
  Biochim Biophys Acta, 1429, 29-39.  
9454604 W.Neuhauser, D.Haltrich, K.D.Kulbe, and B.Nidetzky (1998).
Noncovalent enzyme-substrate interactions in the catalytic mechanism of yeast aldose reductase.
  Biochemistry, 37, 1116-1123.  
9546197 Y.S.Lee, M.Hodoscek, B.R.Brooks, and P.F.Kador (1998).
Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics.
  Biophys Chem, 70, 203-216.  
9261071 M.J.Bennett, R.H.Albert, J.M.Jez, H.Ma, T.M.Penning, and M.Lewis (1997).
Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase.
  Structure, 5, 799-812.
PDB code: 1afs
9329083 O.el-Kabbani, D.A.Carper, M.H.McGowan, Y.Devedjiev, K.J.Rees-Milton, and T.G.Flynn (1997).
Studies on the inhibitor-binding site of porcine aldehyde reductase: crystal structure of the holoenzyme-inhibitor ternary complex.
  Proteins, 29, 186-192.
PDB code: 1ae4
8958066 E.H.Walker, and N.C.Bruce (1996).
Towards engineering an improved morphine dehydrogenase.
  Ann N Y Acad Sci, 799, 6.  
  8779568 K.Kita, K.Matsuzaki, T.Hashimoto, H.Yanase, N.Kato, M.C.Chung, M.Kataoka, and S.Shimizu (1996).
Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product.
  Appl Environ Microbiol, 62, 2303-2310.  
8718859 M.J.Bennett, B.P.Schlegel, J.M.Jez, T.M.Penning, and M.Lewis (1996).
Structure of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP+.
  Biochemistry, 35, 10702-10711.
PDB code: 1lwi
8913694 M.von Itzstein, and P.Colman (1996).
Design and synthesis of carbohydrate-based inhibitors of protein-carbohydrate interactions.
  Curr Opin Struct Biol, 6, 703-709.  
8916913 O.A.Barski, K.H.Gabbay, and K.M.Bohren (1996).
The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.
  Biochemistry, 35, 14276-14280.  
8631945 P.M.Kiefer, K.I.Varughese, Y.Su, N.H.Xuong, C.F.Chang, P.Gupta, T.Bray, and J.M.Whiteley (1996).
Altered structural and mechanistic properties of mutant dihydropteridine reductases.
  J Biol Chem, 271, 3437-3444.  
8994968 R.L.Kingston, R.K.Scopes, and E.N.Baker (1996).
The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP.
  Structure, 4, 1413-1428.
PDB code: 1ofg
8780524 T.Nakano, and J.M.Petrash (1996).
Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase.
  Biochemistry, 35, 11196-11202.  
7811733 D.A.Carper, T.C.Hohman, and S.E.Old (1995).
Residues affecting the catalysis and inhibition of rat lens aldose reductase.
  Biochim Biophys Acta, 1246, 67-73.  
7552737 D.H.Harrison (1995).
All in the family.
  Nat Struct Biol, 2, 719-720.  
7846042 H.M.Wilks, and M.P.Timko (1995).
A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity.
  Proc Natl Acad Sci U S A, 92, 724-728.  
7552731 O.el-Kabbani, K.Judge, S.L.Ginell, D.A.Myles, L.J.DeLucas, and T.G.Flynn (1995).
Structure of porcine aldehyde reductase holoenzyme.
  Nat Struct Biol, 2, 687-692.  
7622508 T.J.Kubiseski, and T.G.Flynn (1995).
Studies on human aldose reductase. Probing the role of arginine 268 by site-directed mutagenesis.
  J Biol Chem, 270, 16911-16917.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer