spacer
spacer

PDBsum entry 1znh

Go to PDB code: 
protein ligands metals links
Transport protein PDB id
1znh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
157 a.a. *
Ligands
OC9
Metals
_CD ×6
Waters ×176
* Residue conservation analysis
PDB id:
1znh
Name: Transport protein
Title: Strong solute-solute dispersive interactions in a protein-ligand complex
Structure: Major urinary protein. Chain: a. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: mup1. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.10Å     R-factor:   0.190     R-free:   0.222
Authors: R.Malham,S.Johnstone,R.J.Bingham,E.Barratt,S.E.Phillips,C.A.Laughton, S.W.Homans
Key ref: R.Malham et al. (2005). Strong solute-solute dispersive interactions in a protein-ligand complex. J Am Chem Soc, 127, 17061-17067. PubMed id: 16316253 DOI: 10.1021/ja055454g
Date:
11-May-05     Release date:   20-Dec-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P11589  (MUP2_MOUSE) -  Major urinary protein 2 from Mus musculus
Seq:
Struc:
180 a.a.
157 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1021/ja055454g J Am Chem Soc 127:17061-17067 (2005)
PubMed id: 16316253  
 
 
Strong solute-solute dispersive interactions in a protein-ligand complex.
R.Malham, S.Johnstone, R.J.Bingham, E.Barratt, S.E.Phillips, C.A.Laughton, S.W.Homans.
 
  ABSTRACT  
 
The contributions of solute-solute dispersion interactions to binding thermodynamics have generally been thought to be small, due to the surmised equality between solute-solvent dispersion interactions prior to the interaction versus solute-solute dispersion interactions following the interaction. The thermodynamics of binding of primary alcohols to the major urinary protein (MUP-I) indicate that this general assumption is not justified. The enthalpy of binding becomes more favorable with increasing chain length, whereas the entropy of binding becomes less favorable, both parameters showing a linear dependence. Despite the hydrophobicity of the interacting species, these data show that binding is not dominated by the classical hydrophobic effect, but can be attributed to favorable ligand-protein dispersion interactions.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21205906 L.Wang, B.J.Berne, and R.A.Friesner (2011).
Ligand binding to protein-binding pockets with wet and dry regions.
  Proc Natl Acad Sci U S A, 108, 1326-1330.  
20524663 N.R.Syme, C.Dennis, A.Bronowska, G.C.Paesen, and S.W.Homans (2010).
Comparison of entropic contributions to binding in a "hydrophilic" versus "hydrophobic" ligand-protein interaction.
  J Am Chem Soc, 132, 8682-8689.  
20509168 S.Perez-Miller, Q.Zou, M.V.Novotny, and T.D.Hurley (2010).
High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones.
  Protein Sci, 19, 1469-1479.
PDB codes: 3kff 3kfg 3kfh 3kfi
19754086 J.Michel, J.Tirado-Rives, and W.L.Jorgensen (2009).
Prediction of the water content in protein binding sites.
  J Phys Chem B, 113, 13337-13346.  
19390145 S.A.White, L.Briand, D.J.Scott, and A.J.Borysik (2009).
Structure of rat odorant-binding protein OBP1 at 1.6 A resolution.
  Acta Crystallogr D Biol Crystallogr, 65, 403-410.
PDB code: 3fiq
18197343 H.J.Schneider, and A.K.Yatsimirsky (2008).
Selectivity in supramolecular host-guest complexes.
  Chem Soc Rev, 37, 263-277.  
17368482 C.A.MacRaild, A.H.Daranas, A.Bronowska, and S.W.Homans (2007).
Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein.
  J Mol Biol, 368, 822-832.  
17914464 J.Cerný, and P.Hobza (2007).
Non-covalent interactions in biomacromolecules.
  Phys Chem Chem Phys, 9, 5291-5303.  
17625803 N.R.Syme, C.Dennis, S.E.Phillips, and S.W.Homans (2007).
Origin of heat capacity changes in a "nonclassical" hydrophobic interaction.
  Chembiochem, 8, 1509-1511.
PDB code: 2ozq
16709675 J.A.Wagoner, and N.A.Baker (2006).
Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms.
  Proc Natl Acad Sci U S A, 103, 8331-8336.  
16906619 N.Shimokhina, A.Bronowska, and S.W.Homans (2006).
Contribution of ligand desolvation to binding thermodynamics in a ligand-protein interaction.
  Angew Chem Int Ed Engl, 45, 6374-6376.  
16637649 V.M.Krishnamurthy, B.R.Bohall, V.Semetey, and G.M.Whitesides (2006).
The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation.
  J Am Chem Soc, 128, 5802-5812.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer