 |
PDBsum entry 1zcd
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
1zcd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
435:1197-1202
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH.
|
|
C.Hunte,
E.Screpanti,
M.Venturi,
A.Rimon,
E.Padan,
H.Michel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The control by Na+/H+ antiporters of sodium/proton concentration and cell volume
is crucial for the viability of all cells. Adaptation to high salinity and/or
extreme pH in plants and bacteria or in human heart muscles requires the action
of Na+/H+ antiporters. Their activity is tightly controlled by pH. Here we
present the crystal structure of pH-downregulated NhaA, the main antiporter of
Escherichia coli and many enterobacteria. A negatively charged ion funnel opens
to the cytoplasm and ends in the middle of the membrane at the putative
ion-binding site. There, a unique assembly of two pairs of short helices
connected by crossed, extended chains creates a balanced electrostatic
environment. We propose that the binding of charged substrates causes an
electric imbalance, inducing movements, that permit a rapid alternating-access
mechanism. This ion-exchange machinery is regulated by a conformational change
elicited by a pH signal perceived at the entry to the cytoplasmic funnel.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: Overall architecture of NhaA. a, Stereo view of a
ribbon representation viewed parallel to the membrane (grey
broken lines). The 12 TMSs are labelled with roman numerals;
they comprise the following residues: 12 -30 (I), 59 -85 (II),
95 -116 (III), 121 -131 (IVp), 134 -143 (IVc), 150 -175 (V), 182
-200 (VI), 205 -218 (VII), 223 -236 (VIII), 247 -271 (IX), 290
-311 (X), 327 -336 (XIc), 340 -350 (XIp) and 357 -382 (XII). N
and C indicate the N and C termini. b, TMSs IV/XI assembly.
Helices of the assembly and helix V are shown as cylinders,
helix X in ribbon representation. The partial charges of the N
and C termini of the short helices are indicated. The
orientation of the molecule is indicated with respect to a.
|
 |
Figure 4.
Figure 4: Structural basis of Na^+/H+ translocation and pH
regulation. a, Stereo view of TMSs oriented parallel to the
membrane, with the cytoplasmic side at the top. The colour code
is as in Fig. 2. Residues whose alterations affect pH
regulation12,16,31, apparent K[m] (refs 29, 38) or both29,38 are
shown with side chains and labelled blue, black and purple,
respectively. The putative 'pH sensor' is encircled. The
approximate position of the cytoplasmic passage is marked by red
dotted lines connecting Asp 164 with residues lining the funnel
entry. b, Close interactions between helix IX and helices IVc
and XIp that are important for pH regulation. Van der Waals
contacts between side chains are indicated with dotted red lines.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2005,
435,
1197-1202)
copyright 2005.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Perez,
C.Koshy,
O.Yildiz,
and
C.Ziegler
(2012).
Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP.
|
| |
Nature,
490,
126-130.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Mancusso,
G.G.Gregorio,
Q.Liu,
and
D.N.Wang
(2012).
Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter.
|
| |
Nature,
491,
622-626.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.L.Lee,
B.D.Sykes,
and
L.Fliegel
(2011).
Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach.
|
| |
Biochem Cell Biol,
89,
189-199.
|
 |
|
|
|
|
 |
C.T.Resch,
J.L.Winogrodzki,
C.C.Häse,
and
P.Dibrov
(2011).
Insights into the biochemistry of the ubiquitous NhaP family of cation/H+ antiporters.
|
| |
Biochem Cell Biol,
89,
130-137.
|
 |
|
|
|
|
 |
J.Hovers,
M.Potschies,
A.Polidori,
B.Pucci,
S.Raynal,
F.Bonneté,
M.J.Serrano-Vega,
C.G.Tate,
D.Picot,
Y.Pierre,
J.L.Popot,
R.Nehmé,
M.Bidet,
I.Mus-Veteau,
H.Busskamp,
K.H.Jung,
A.Marx,
P.A.Timmins,
and
W.Welte
(2011).
A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization.
|
| |
Mol Membr Biol,
28,
171-181.
|
 |
|
|
|
|
 |
K.Illergård,
A.Kauko,
and
A.Elofsson
(2011).
Why are polar residues within the membrane core evolutionary conserved?
|
| |
Proteins,
79,
79-91.
|
 |
|
|
|
|
 |
N.Di Maiuta,
P.Schwarzentruber,
and
C.S.Dow
(2011).
Enhancement of the antimicrobial performance of biocidal formulations used for the preservation of white mineral dispersions.
|
| |
Appl Microbiol Biotechnol,
89,
429-439.
|
 |
|
|
|
|
 |
N.J.Hu,
S.Iwata,
A.D.Cameron,
and
D.Drew
(2011).
Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT.
|
| |
Nature,
478,
408-411.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Goswami,
C.Paulino,
D.Hizlan,
J.Vonck,
O.Yildiz,
and
W.Kühlbrandt
(2011).
Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1.
|
| |
EMBO J,
30,
439-449.
|
 |
|
|
|
|
 |
T.A.Krulwich,
G.Sachs,
and
E.Padan
(2011).
Molecular aspects of bacterial pH sensing and homeostasis.
|
| |
Nat Rev Microbiol,
9,
330-343.
|
 |
|
|
|
|
 |
Y.Polyhach,
E.Bordignon,
and
G.Jeschke
(2011).
Rotamer libraries of spin labelled cysteines for protein studies.
|
| |
Phys Chem Chem Phys,
13,
2356-2366.
|
 |
|
|
|
|
 |
Y.Sonoda,
S.Newstead,
N.J.Hu,
Y.Alguel,
E.Nji,
K.Beis,
S.Yashiro,
C.Lee,
J.Leung,
A.D.Cameron,
B.Byrne,
S.Iwata,
and
D.Drew
(2011).
Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures.
|
| |
Structure,
19,
17-25.
|
 |
|
|
|
|
 |
A.Amunts,
H.Toporik,
A.Borovikova,
and
N.Nelson
(2010).
Structure determination and improved model of plant photosystem I.
|
| |
J Biol Chem,
285,
3478-3486.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.B.Waight,
J.Love,
and
D.N.Wang
(2010).
Structure and mechanism of a pentameric formate channel.
|
| |
Nat Struct Mol Biol,
17,
31-37.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Karasawa,
K.Mitsui,
M.Matsushita,
and
H.Kanazawa
(2010).
Intermolecular cross-linking of monomers in Helicobacter pylori Na+/H+ antiporter NhaA at the dimer interface inhibits antiporter activity.
|
| |
Biochem J,
426,
99.
|
 |
|
|
|
|
 |
A.Watanabe,
S.Choe,
V.Chaptal,
J.M.Rosenberg,
E.M.Wright,
M.Grabe,
and
J.Abramson
(2010).
The mechanism of sodium and substrate release from the binding pocket of vSGLT.
|
| |
Nature,
468,
988-991.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.J.Tsai,
and
C.Ziegler
(2010).
Coupling electron cryomicroscopy and X-ray crystallography to understand secondary active transport.
|
| |
Curr Opin Struct Biol,
20,
448-455.
|
 |
|
|
|
|
 |
J.A.Lundbaek,
S.A.Collingwood,
H.I.Ingólfsson,
R.Kapoor,
and
O.S.Andersen
(2010).
Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.
|
| |
J R Soc Interface,
7,
373-395.
|
 |
|
|
|
|
 |
K.Herz,
A.Rimon,
E.Olkhova,
L.Kozachkov,
and
E.Padan
(2010).
Transmembrane segment II of NhaA Na+/H+ antiporter lines the cation passage, and Asp65 is critical for pH activation of the antiporter.
|
| |
J Biol Chem,
285,
2211-2220.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
L.F.Ferraz,
L.C.Verde,
F.C.Reis,
F.Alexandrino,
A.P.Felício,
M.T.Novo,
O.Garcia,
and
L.M.Ottoboni
(2010).
Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans.
|
| |
Arch Microbiol,
192,
531-540.
|
 |
|
|
|
|
 |
M.Schushan,
M.Xiang,
P.Bogomiakov,
E.Padan,
R.Rao,
and
N.Ben-Tal
(2010).
Model-guided mutagenesis drives functional studies of human NHA2, implicated in hypertension.
|
| |
J Mol Biol,
396,
1181-1196.
|
 |
|
|
|
|
 |
R.O.Dror,
M.Ã.˜.Jensen,
D.W.Borhani,
and
D.E.Shaw
(2010).
Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations.
|
| |
J Gen Physiol,
135,
555-562.
|
 |
|
|
|
|
 |
S.Yang,
M.L.Land,
D.M.Klingeman,
D.A.Pelletier,
T.Y.Lu,
S.L.Martin,
H.B.Guo,
J.C.Smith,
and
S.D.Brown
(2010).
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
107,
10395-10400.
|
 |
|
|
|
|
 |
T.Ohnishi
(2010).
Structural biology: Piston drives a proton pump.
|
| |
Nature,
465,
428-429.
|
 |
|
|
|
|
 |
Y.Krauke,
and
H.Sychrová
(2010).
Chimeras between C. glabrata Cnh1 and S. cerevisiae Nha1 Na+/H+-antiporters are functional proteins increasing the salt tolerance of yeast cells.
|
| |
Folia Microbiol (Praha),
55,
435-441.
|
 |
|
|
|
|
 |
Y.Zhao,
M.Quick,
L.Shi,
E.L.Mehler,
H.Weinstein,
and
J.A.Javitch
(2010).
Substrate-dependent proton antiport in neurotransmitter:sodium symporters.
|
| |
Nat Chem Biol,
6,
109-116.
|
 |
|
|
|
|
 |
B.L.Lee,
X.Li,
Y.Liu,
B.D.Sykes,
and
L.Fliegel
(2009).
Structural and Functional Analysis of Transmembrane XI of the NHE1 Isoform of the Na+/H+ Exchanger.
|
| |
J Biol Chem,
284,
11546-11556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Hilger,
Y.Polyhach,
H.Jung,
and
G.Jeschke
(2009).
Backbone Structure of Transmembrane Domain IX of the Na(+)/Proline Transporter PutP of Escherichia coli.
|
| |
Biophys J,
96,
217-225.
|
 |
|
|
|
|
 |
D.Paredes-Sabja,
P.Setlow,
and
M.R.Sarker
(2009).
GerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens.
|
| |
J Bacteriol,
191,
3822-3831.
|
 |
|
|
|
|
 |
D.Wang,
and
G.A.Voth
(2009).
Proton transport pathway in the ClC Cl-/H+ antiporter.
|
| |
Biophys J,
97,
121-131.
|
 |
|
|
|
|
 |
E.Olkhova,
L.Kozachkov,
E.Padan,
and
H.Michel
(2009).
Combined computational and biochemical study reveals the importance of electrostatic interactions between the "pH sensor" and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli.
|
| |
Proteins,
76,
548-559.
|
 |
|
|
|
|
 |
F.Orsini,
M.Santacroce,
P.Arosio,
M.Castagna,
C.Lenardi,
G.Poletti,
and
F.V.Sacchi
(2009).
Intermittent contact mode AFM investigation of native plasma membrane of Xenopus laevis oocyte.
|
| |
Eur Biophys J,
38,
903-910.
|
 |
|
|
|
|
 |
H.Krishnamurthy,
C.L.Piscitelli,
and
E.Gouaux
(2009).
Unlocking the molecular secrets of sodium-coupled transporters.
|
| |
Nature,
459,
347-355.
|
 |
|
|
|
|
 |
J.Dzioba-Winogrodzki,
O.Winogrodzki,
T.A.Krulwich,
M.A.Boin,
C.C.Häse,
and
P.Dibrov
(2009).
The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host.
|
| |
J Mol Microbiol Biotechnol,
16,
176-186.
|
 |
|
|
|
|
 |
K.Tsunekawa,
T.Shijuku,
M.Hayashimoto,
Y.Kojima,
K.Onai,
M.Morishita,
M.Ishiura,
T.Kuroda,
T.Nakamura,
H.Kobayashi,
M.Sato,
K.Toyooka,
K.Matsuoka,
T.Omata,
and
N.Uozumi
(2009).
Identification and Characterization of the Na+/H+ Antiporter Nhas3 from the Thylakoid Membrane of Synechocystis sp. PCC 6803.
|
| |
J Biol Chem,
284,
16513-16521.
|
 |
|
|
|
|
 |
L.Fliegel
(2009).
Regulation of the Na(+)/H(+) exchanger in the healthy and diseased myocardium.
|
| |
Expert Opin Ther Targets,
13,
55-68.
|
 |
|
|
|
|
 |
L.R.Forrest,
and
G.Rudnick
(2009).
The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters.
|
| |
Physiology (Bethesda),
24,
377-386.
|
 |
|
|
|
|
 |
M.D.Slugoski,
K.M.Smith,
A.M.Ng,
S.Y.Yao,
E.Karpinski,
C.E.Cass,
S.A.Baldwin,
and
J.D.Young
(2009).
Conserved Glutamate Residues Glu-343 and Glu-519 Provide Mechanistic Insights into Cation/Nucleoside Cotransport by Human Concentrative Nucleoside Transporter hCNT3.
|
| |
J Biol Chem,
284,
17266-17280.
|
 |
|
|
|
|
 |
M.Donowitz,
S.Mohan,
C.X.Zhu,
T.E.Chen,
R.Lin,
B.Cha,
N.C.Zachos,
R.Murtazina,
R.Sarker,
and
X.Li
(2009).
NHE3 regulatory complexes.
|
| |
J Exp Biol,
212,
1638-1646.
|
 |
|
|
|
|
 |
M.S.Yousef,
and
L.Guan
(2009).
A 3D structure model of the melibiose permease of Escherichia coli represents a distinctive fold for Na+ symporters.
|
| |
Proc Natl Acad Sci U S A,
106,
15291-15296.
|
 |
|
|
|
|
 |
N.Reyes,
C.Ginter,
and
O.Boudker
(2009).
Transport mechanism of a bacterial homologue of glutamate transporters.
|
| |
Nature,
462,
880-885.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.D.Jeffrey
(2009).
Analysis of errors in the structure determination of MsbA.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
193-199.
|
 |
|
|
|
|
 |
R.Bizzarri,
M.Serresi,
S.Luin,
and
F.Beltram
(2009).
Green fluorescent protein based pH indicators for in vivo use: a review.
|
| |
Anal Bioanal Chem,
393,
1107-1122.
|
 |
|
|
|
|
 |
S.H.Park,
S.S.Choi,
Y.J.Kim,
Y.K.Chang,
D.H.Sherman,
and
E.S.Kim
(2009).
Functional expression of SCO7832 stimulates tautomycetin production via pathway-specific regulatory gene overexpression in Streptomyces sp. CK4412.
|
| |
J Ind Microbiol Biotechnol,
36,
993-998.
|
 |
|
|
|
|
 |
S.L.Reichow,
and
T.Gonen
(2009).
Lipid-protein interactions probed by electron crystallography.
|
| |
Curr Opin Struct Biol,
19,
560-565.
|
 |
|
|
|
|
 |
W.R.Harvey,
D.Y.Boudko,
M.R.Rheault,
and
B.A.Okech
(2009).
NHE(VNAT): an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter (NAT) forms an Na+/H+ exchanger (NHE).
|
| |
J Exp Biol,
212,
347-357.
|
 |
|
|
|
|
 |
W.R.Harvey
(2009).
Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
|
| |
J Exp Biol,
212,
1620-1629.
|
 |
|
|
|
|
 |
X.Gao,
F.Lu,
L.Zhou,
S.Dang,
L.Sun,
X.Li,
J.Wang,
and
Y.Shi
(2009).
Structure and mechanism of an amino acid antiporter.
|
| |
Science,
324,
1565-1568.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Kajiyama,
M.Otagiri,
J.Sekiguchi,
T.Kudo,
and
S.Kosono
(2009).
The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues.
|
| |
Microbiology,
155,
2137-2147.
|
 |
|
|
|
|
 |
D.Fuster,
O.W.Moe,
and
D.W.Hilgemann
(2008).
Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry.
|
| |
J Gen Physiol,
132,
465-480.
|
 |
|
|
|
|
 |
D.G.Fuster,
J.Zhang,
M.Shi,
I.A.Bobulescu,
S.Andersson,
and
O.W.Moe
(2008).
Characterization of the sodium/hydrogen exchanger NHA2.
|
| |
J Am Soc Nephrol,
19,
1547-1556.
|
 |
|
|
|
|
 |
D.J.Müller,
N.Wu,
and
K.Palczewski
(2008).
Vertebrate membrane proteins: structure, function, and insights from biophysical approaches.
|
| |
Pharmacol Rev,
60,
43-78.
|
 |
|
|
|
|
 |
E.Padan
(2008).
The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter.
|
| |
Trends Biochem Sci,
33,
435-443.
|
 |
|
|
|
|
 |
H.Janovjak,
K.T.Sapra,
A.Kedrov,
and
D.J.Müller
(2008).
From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins.
|
| |
Chemphyschem,
9,
954-966.
|
 |
|
|
|
|
 |
K.Moncoq,
G.Kemp,
X.Li,
L.Fliegel,
and
H.S.Young
(2008).
Dimeric structure of human Na+/H+ exchanger isoform 1 overproduced in Saccharomyces cerevisiae.
|
| |
J Biol Chem,
283,
4145-4154.
|
 |
|
|
|
|
 |
L.Celik,
B.Schiøtt,
and
E.Tajkhorshid
(2008).
Substrate binding and formation of an occluded state in the leucine transporter.
|
| |
Biophys J,
94,
1600-1612.
|
 |
|
|
|
|
 |
L.R.Forrest,
Y.W.Zhang,
M.T.Jacobs,
J.Gesmonde,
L.Xie,
B.H.Honig,
and
G.Rudnick
(2008).
Mechanism for alternating access in neurotransmitter transporters.
|
| |
Proc Natl Acad Sci U S A,
105,
10338-10343.
|
 |
|
|
|
|
 |
N.Dave,
V.A.Lórenz-Fonfría,
G.Leblanc,
and
E.Padrós
(2008).
FTIR spectroscopy of secondary-structure reorientation of melibiose permease modulated by substrate binding.
|
| |
Biophys J,
94,
3659-3670.
|
 |
|
|
|
|
 |
S.Choi,
J.Jeon,
J.S.Yang,
and
S.Kim
(2008).
Common occurrence of internal repeat symmetry in membrane proteins.
|
| |
Proteins,
71,
68-80.
|
 |
|
|
|
|
 |
S.Faham,
A.Watanabe,
G.M.Besserer,
D.Cascio,
A.Specht,
B.A.Hirayama,
E.M.Wright,
and
J.Abramson
(2008).
The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
|
| |
Science,
321,
810-814.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Weyand,
T.Shimamura,
S.Yajima,
S.Suzuki,
O.Mirza,
K.Krusong,
E.P.Carpenter,
N.G.Rutherford,
J.M.Hadden,
J.O'Reilly,
P.Ma,
M.Saidijam,
S.G.Patching,
R.J.Hope,
H.T.Norbertczak,
P.C.Roach,
S.Iwata,
P.J.Henderson,
and
A.D.Cameron
(2008).
Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.
|
| |
Science,
322,
709-713.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Reddy,
J.Ding,
X.Li,
B.D.Sykes,
J.K.Rainey,
and
L.Fliegel
(2008).
Structural and functional characterization of transmembrane segment IX of the NHE1 isoform of the Na+/H+ exchanger.
|
| |
J Biol Chem,
283,
22018-22030.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Y.Kim,
D.Y.Kim,
D.Shim,
W.Y.Song,
J.Lee,
J.I.Schroeder,
S.Kim,
N.Moran,
and
Y.Lee
(2008).
Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast.
|
| |
J Biol Chem,
283,
15893-15902.
|
 |
|
|
|
|
 |
A.Kedrov,
H.Janovjak,
K.T.Sapra,
and
D.J.Müller
(2007).
Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.
|
| |
Annu Rev Biophys Biomol Struct,
36,
233-260.
|
 |
|
|
|
|
 |
A.M.Jørgensen,
L.Tagmose,
A.M.Jørgensen,
K.P.Bøgesø,
and
G.H.Peters
(2007).
Molecular Dynamics Simulations of Na(+)/Cl(-)-Dependent Neurotransmitter Transporters in a Membrane-Aqueous System.
|
| |
ChemMedChem,
2,
827-840.
|
 |
|
|
|
|
 |
B.Roux
(2007).
A proton-controlled check valve for sodium ion transport.
|
| |
Nat Chem Biol,
3,
609-610.
|
 |
|
|
|
|
 |
C.J.De Feo,
S.G.Aller,
and
V.M.Unger
(2007).
A structural perspective on copper uptake in eukaryotes.
|
| |
Biometals,
20,
705-716.
|
 |
|
|
|
|
 |
D.Hilger,
Y.Polyhach,
E.Padan,
H.Jung,
and
G.Jeschke
(2007).
High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed electron paramagnetic resonance distance measurements.
|
| |
Biophys J,
93,
3675-3683.
|
 |
|
|
|
|
 |
D.R.Livesay,
P.D.Kidd,
S.Eskandari,
and
U.Roshan
(2007).
Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family.
|
| |
BMC Bioinformatics,
8,
397.
|
 |
|
|
|
|
 |
E.Olkhova,
E.Padan,
and
H.Michel
(2007).
The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli.
|
| |
Biophys J,
92,
3784-3791.
|
 |
|
|
|
|
 |
F.Mancia,
and
W.A.Hendrickson
(2007).
Expression of recombinant G-protein coupled receptors for structural biology.
|
| |
Mol Biosyst,
3,
723-734.
|
 |
|
|
|
|
 |
H.W.Pinkett,
A.T.Lee,
P.Lum,
K.P.Locher,
and
D.C.Rees
(2007).
An inward-facing conformation of a putative metal-chelate-type ABC transporter.
|
| |
Science,
315,
373-377.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.T.Arkin,
H.Xu,
M.Ã.˜.Jensen,
E.Arbely,
E.R.Bennett,
K.J.Bowers,
E.Chow,
R.O.Dror,
M.P.Eastwood,
R.Flitman-Tene,
B.A.Gregersen,
J.L.Klepeis,
I.Kolossváry,
Y.Shan,
and
D.E.Shaw
(2007).
Mechanism of Na+/H+ antiporting.
|
| |
Science,
317,
799-803.
|
 |
|
|
|
|
 |
J.Orlowski,
and
S.Grinstein
(2007).
Emerging roles of alkali cation/proton exchangers in organellar homeostasis.
|
| |
Curr Opin Cell Biol,
19,
483-492.
|
 |
|
|
|
|
 |
J.Preiner,
H.Janovjak,
C.Rankl,
H.Knaus,
D.A.Cisneros,
A.Kedrov,
F.Kienberger,
D.J.Muller,
and
P.Hinterdorfer
(2007).
Free energy of membrane protein unfolding derived from single-molecule force measurements.
|
| |
Biophys J,
93,
930-937.
|
 |
|
|
|
|
 |
M.Fujisawa,
M.Ito,
and
T.A.Krulwich
(2007).
Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity.
|
| |
Proc Natl Acad Sci U S A,
104,
13289-13294.
|
 |
|
|
|
|
 |
M.Landau,
K.Herz,
E.Padan,
and
N.Ben-Tal
(2007).
Model structure of the Na+/H+ exchanger 1 (NHE1): functional and clinical implications.
|
| |
J Biol Chem,
282,
37854-37863.
|
 |
|
|
|
|
 |
M.Rapp,
S.Seppälä,
E.Granseth,
and
G.von Heijne
(2007).
Emulating membrane protein evolution by rational design.
|
| |
Science,
315,
1282-1284.
|
 |
|
|
|
|
 |
M.Xiang,
M.Feng,
S.Muend,
and
R.Rao
(2007).
A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension.
|
| |
Proc Natl Acad Sci U S A,
104,
18677-18681.
|
 |
|
|
|
|
 |
S.F.Pedersen,
S.A.King,
E.B.Nygaard,
R.R.Rigor,
and
P.M.Cala
(2007).
NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity.
|
| |
J Biol Chem,
282,
19716-19727.
|
 |
|
|
|
|
 |
S.L.Rusch,
and
D.A.Kendall
(2007).
Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon.
|
| |
Biochim Biophys Acta,
1768,
5.
|
 |
|
|
|
|
 |
S.Schuldiner
(2007).
When biochemistry meets structural biology: the cautionary tale of EmrE.
|
| |
Trends Biochem Sci,
32,
252-258.
|
 |
|
|
|
|
 |
T.Hisamitsu,
K.Yamada,
T.Y.Nakamura,
and
S.Wakabayashi
(2007).
Functional importance of charged residues within the putative intracellular loops in pH regulation by Na+/ H+ exchanger NHE1.
|
| |
FEBS J,
274,
4326-4335.
|
 |
|
|
|
|
 |
X.Huang,
and
C.G.Zhan
(2007).
How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation.
|
| |
Biophys J,
93,
3627-3639.
|
 |
|
|
|
|
 |
A.Kedrov,
and
D.J.Müller
(2006).
Characterizing folding, structure, molecular interactions and ligand gated activation of single sodium/proton antiporters.
|
| |
Naunyn Schmiedebergs Arch Pharmacol,
372,
400-412.
|
 |
|
|
|
|
 |
E.Olkhova,
C.Hunte,
E.Screpanti,
E.Padan,
and
H.Michel
(2006).
Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications.
|
| |
Proc Natl Acad Sci U S A,
103,
2629-2634.
|
 |
|
|
|
|
 |
H.Nury,
C.Dahout-Gonzalez,
V.Trézéguet,
G.J.Lauquin,
G.Brandolin,
and
E.Pebay-Peyroula
(2006).
Relations between structure and function of the mitochondrial ADP/ATP carrier.
|
| |
Annu Rev Biochem,
75,
713-741.
|
 |
|
|
|
|
 |
I.A.Bobulescu,
and
O.W.Moe
(2006).
Na+/H+ exchangers in renal regulation of acid-base balance.
|
| |
Semin Nephrol,
26,
334-344.
|
 |
|
|
|
|
 |
J.Ding,
J.K.Rainey,
C.Xu,
B.D.Sykes,
and
L.Fliegel
(2006).
Structural and functional characterization of transmembrane segment VII of the Na+/H+ exchanger isoform 1.
|
| |
J Biol Chem,
281,
29817-29829.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.Lesoine,
B.Holmberg,
P.Maloney,
X.Wang,
L.Novotny,
and
P.A.Knauf
(2006).
Development of an spFRET method to measure structure changes in ion exchange proteins.
|
| |
Acta Physiol (Oxf),
187,
141-147.
|
 |
|
|
|
|
 |
L.Bamber,
M.Harding,
P.J.Butler,
and
E.R.Kunji
(2006).
Yeast mitochondrial ADP/ATP carriers are monomeric in detergents.
|
| |
Proc Natl Acad Sci U S A,
103,
16224-16229.
|
 |
|
|
|
|
 |
L.Guan,
I.N.Smirnova,
G.Verner,
S.Nagamori,
S.Nagamoni,
and
H.R.Kaback
(2006).
Manipulating phospholipids for crystallization of a membrane transport protein.
|
| |
Proc Natl Acad Sci U S A,
103,
1723-1726.
|
 |
|
|
|
|
 |
M.E.Malo,
and
L.Fliegel
(2006).
Physiological role and regulation of the Na+/H+ exchanger.
|
| |
Can J Physiol Pharmacol,
84,
1081-1095.
|
 |
|
|
|
|
 |
N.Chai,
and
P.Bates
(2006).
Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus.
|
| |
Proc Natl Acad Sci U S A,
103,
5531-5536.
|
 |
|
|
|
|
 |
R.Dutzler
(2006).
The ClC family of chloride channels and transporters.
|
| |
Curr Opin Struct Biol,
16,
439-446.
|
 |
|
|
|
|
 |
S.H.White
(2006).
Rhomboid intramembrane protease structures galore!
|
| |
Nat Struct Mol Biol,
13,
1049-1051.
|
 |
|
|
|
|
 |
X.León,
R.Lemonnier,
G.Leblanc,
and
E.Padrós
(2006).
Changes in secondary structures and acidic side chains of melibiose permease upon cosubstrates binding.
|
| |
Biophys J,
91,
4440-4449.
|
 |
|
|
|
|
 |
X.Ren,
D.A.Nicoll,
and
K.D.Philipson
(2006).
Helix packing of the cardiac Na+-Ca2+ exchanger: proximity of transmembrane segments 1, 2, and 6.
|
| |
J Biol Chem,
281,
22808-22814.
|
 |
|
|
|
|
 |
Y.B.Ammar,
S.Takeda,
T.Hisamitsu,
H.Mori,
and
S.Wakabayashi
(2006).
Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation.
|
| |
EMBO J,
25,
2315-2325.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.W.Zhang,
and
G.Rudnick
(2006).
The cytoplasmic substrate permeation pathway of serotonin transporter.
|
| |
J Biol Chem,
281,
36213-36220.
|
 |
|
|
|
|
 |
A.Karasawa,
Y.Tsuboi,
H.Inoue,
R.Kinoshita,
N.Nakamura,
and
H.Kanazawa
(2005).
Detection of oligomerization and conformational changes in the Na+/H+ antiporter from Helicobacter pylori by fluorescence resonance energy transfer.
|
| |
J Biol Chem,
280,
41900-41911.
|
 |
|
|
|
|
 |
E.Padan,
E.Bibi,
M.Ito,
and
T.A.Krulwich
(2005).
Alkaline pH homeostasis in bacteria: new insights.
|
| |
Biochim Biophys Acta,
1717,
67-88.
|
 |
|
|
|
|
 |
F.Meier-Abt,
Y.Mokrab,
and
K.Mizuguchi
(2005).
Organic anion transporting polypeptides of the OATP/SLCO superfamily: identification of new members in nonmammalian species, comparative modeling and a potential transport mode.
|
| |
J Membr Biol,
208,
213-227.
|
 |
|
|
|
|
 |
I.Sobczak,
and
J.S.Lolkema
(2005).
The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism.
|
| |
Microbiol Mol Biol Rev,
69,
665-695.
|
 |
|
|
|
|
 |
J.Liu,
Y.Xue,
Q.Wang,
Y.Wei,
T.H.Swartz,
D.B.Hicks,
M.Ito,
Y.Ma,
and
T.A.Krulwich
(2005).
The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda Lake Haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment.
|
| |
J Bacteriol,
187,
7589-7595.
|
 |
|
|
|
|
 |
O.Pornillos,
Y.J.Chen,
A.P.Chen,
and
G.Chang
(2005).
X-ray structure of the EmrE multidrug transporter in complex with a substrate.
|
| |
Science,
310,
1950-1953.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Habibian,
J.Dzioba,
J.Barrett,
M.Y.Galperin,
P.C.Loewen,
and
P.Dibrov
(2005).
Functional analysis of conserved polar residues in Vc-NhaD, Na+/H+ antiporter of Vibrio cholerae.
|
| |
J Biol Chem,
280,
39637-39643.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |