spacer
spacer

PDBsum entry 1xwh

Go to PDB code: 
protein metals links
Transcription PDB id
1xwh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
66 a.a. *
Metals
_ZN ×2
* Residue conservation analysis
PDB id:
1xwh
Name: Transcription
Title: Nmr structure of the first phd finger of autoimmune regulator protein (aire1): insights into apeced
Structure: Autoimmune regulator. Chain: a. Fragment: first phddomain. Synonym: autoimmune polyendocrinopathy candidiasis ectodermal dystrophy protein, apeced protein. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: aire1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
NMR struc: 20 models
Authors: M.J.Bottomley,G.Stier,J.Krasotkina,G.Legube,B.Simon,A.Akhtar, M.Sattler,G.Musco
Key ref:
M.J.Bottomley et al. (2005). NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease. J Biol Chem, 280, 11505-11512. PubMed id: 15649886 DOI: 10.1074/jbc.M413959200
Date:
01-Nov-04     Release date:   25-Jan-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O43918  (AIRE_HUMAN) -  Autoimmune regulator from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
545 a.a.
66 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1074/jbc.M413959200 J Biol Chem 280:11505-11512 (2005)
PubMed id: 15649886  
 
 
NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease.
M.J.Bottomley, G.Stier, D.Pennacchini, G.Legube, B.Simon, A.Akhtar, M.Sattler, G.Musco.
 
  ABSTRACT  
 
Mutations in the autoimmune regulator protein AIRE1 cause a monogenic autosomal recessively inherited disease: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE1 is a multidomain protein that harbors two plant homeodomain (PHD)-type zinc fingers. The first PHD finger of AIRE1 is a mutational hot spot, to which several pathological point mutations have been mapped. Using heteronuclear NMR spectroscopy, we determined the solution structure of the first PHD finger of AIRE1 (AIRE1-PHD1), and characterized the peptide backbone mobility of the domain. We performed a conformational analysis of pathological AIRE1-PHD1 mutants that allowed us to rationalize the structural impact of APECED-causing mutations and to identify an interaction site with putative protein ligands of the AIRE1-PHD1 domain. The structure unequivocally exhibits the canonical PHD finger fold, with a highly conserved tryptophan buried inside the structure. The PHD finger is stabilized by two zinc ions coordinated in an interleaved (cross-brace) scheme. This zinc coordination resembles RING finger domains, which can function as E3 ligases in the ubiquitination pathway. Based on this fold similarity, it has been suggested that PHD fingers might also function as E3 ligases, although this hypothesis is controversial. At variance to a previous report, we could not find any evidence that AIRE1-PHD1 has an intrinsic E3 ubiquitin ligase activity, nor detect any direct interaction between AIRE1-PHD1 and its putative cognate E2. Consistently, we show that the AIRE1-PHD1 structure is clearly distinct from the RING finger fold. Our results point to a function of the AIRE1-PHD1 domain in protein-protein interactions, which is impaired in some APECED mutations.
 
  Selected figure(s)  
 
Figure 1.
FIG. 1. The three-dimensional structure of the AIRE1-PHD1 domain. A, multiple sequence alignment of PHD and RING finger domains. Zinc-binding residues and the conserved Trp are marked with asterisks (*). Sites of APECED-causing mutations are marked with a red plus (+). Secondary structure elements of AIRE1-PHD1 are shown above the alignment. B, stereo-view representation of the backbone atoms (N, C , C') for residues 295-344 of an NMR ensemble of 20 structures. Secondary structure elements are in blue, the loops and random coil in gray, the variable loop L3 in yellow, the zinc ions in pink, and the commonly conserved Trp residue side chain in cyan. C, ribbon representation of AIRE1-PHD1 (same orientation as B, showing the side chains (cyan) and atoms (sulfur in yellow, nitrogen in green) of the zinc-coordinating residues, plus the conserved Trp335 (cyan).
Figure 5.
FIG. 5. Location and structural effects of APECED causing mutations. 1H-1D spectra (amide region) of pathological mutants of AIRE1-PHD1 and of wild-type AIRE1-PHD1 and AIRE1-PHD2. A, mutant C311Y; B, AIRE1-PHD1 wild type upon addition of 20 mM EDTA; C, mutant P326Q; D, mutant P326L; asterisks indicate the presence of additional conformers, possibly coming from a cis-trans isomerization of P325; E, mutant V301M; F, wild-type AIRE1 PHD1, and G, wild-type AIRE1-PHD2; H, ribbon representation of the AIRE1-PHD1 structure (blue) and mapping of pathological point mutations by showing their side chains in red; the zinc-binding residues are in cyan, the cis-proline Pro325 in yellow, and the zinc ions in pink. I, space-filled representation of AIRE1-PHD1, with pathological mutation sites in red, Pro325 in yellow and zinc ions in pink. Val301 and Pro326 are partially exposed to the surface.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2005, 280, 11505-11512) copyright 2005.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20803232 A.H.Aguissa-Touré, R.P.Wong, and G.Li (2011).
The ING family tumor suppressors: from structure to function.
  Cell Mol Life Sci, 68, 45-54.  
21303359 S.A.Eldershaw, D.M.Sansom, and P.Narendran (2011).
Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue.
  Clin Exp Immunol, 163, 296-308.  
20923397 K.L.Yap, and M.M.Zhou (2010).
Keeping it in the family: diverse histone recognition by conserved structural folds.
  Crit Rev Biochem Mol Biol, 45, 488-505.  
18780289 A.H.Coles, and S.N.Jones (2009).
The ING gene family in the regulation of cell growth and tumorigenesis.
  J Cell Physiol, 218, 45-57.  
19302042 D.Mathis, and C.Benoist (2009).
Aire.
  Annu Rev Immunol, 27, 287-312.  
19293276 F.Chignola, M.Gaetani, A.Rebane, T.Org, L.Mollica, C.Zucchelli, A.Spitaleri, V.Mannella, P.Peterson, and G.Musco (2009).
The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation.
  Nucleic Acids Res, 37, 2951-2961.
PDB code: 2ke1
19325622 V.G.Bhoj, and Z.J.Chen (2009).
Ubiquitylation in innate and adaptive immunity.
  Nature, 458, 430-437.  
19789627 W.Wei, J.Huang, Y.J.Hao, H.F.Zou, H.W.Wang, J.Y.Zhao, X.Y.Liu, W.K.Zhang, B.Ma, J.S.Zhang, and S.Y.Chen (2009).
Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.
  PLoS One, 4, e7209.  
18200029 A.S.Bøe Wolff, B.Oftedal, S.Johansson, O.Bruland, K.Løvås, A.Meager, C.Pedersen, E.S.Husebye, and P.M.Knappskog (2008).
AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I.
  Genes Immun, 9, 130-136.  
18840680 A.S.Koh, A.J.Kuo, S.Y.Park, P.Cheung, J.Abramson, D.Bua, D.Carney, S.E.Shoelson, O.Gozani, R.E.Kingston, C.Benoist, and D.Mathis (2008).
Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity.
  Proc Natl Acad Sci U S A, 105, 15878-15883.  
  19011376 G.Musco, and P.Peterson (2008).
PHD finger of autoimmune regulator: An epigenetic link between the histone modifications and tissue-specific antigen expression in thymus.
  Epigenetics, 3, 310-314.  
17997173 I.Liiv, A.Rebane, T.Org, M.Saare, J.Maslovskaja, K.Kisand, E.Juronen, L.Valmu, M.J.Bottomley, N.Kalkkinen, and P.Peterson (2008).
DNA-PK contributes to the phosphorylation of AIRE: Importance in transcriptional activity.
  Biochim Biophys Acta, 1783, 74-83.  
18682256 L.A.Baker, C.D.Allis, and G.G.Wang (2008).
PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks.
  Mutat Res, 647, 3.  
18214467 M.Saltis, M.F.Criscitiello, Y.Ohta, M.Keefe, N.S.Trede, R.Goitsuka, and M.F.Flajnik (2008).
Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis.
  Immunogenetics, 60, 105-114.  
19008896 P.Peterson, T.Org, and A.Rebane (2008).
Transcriptional regulation by AIRE: molecular mechanisms of central tolerance.
  Nat Rev Immunol, 8, 948-957.  
18036806 A.E.Lin, and T.W.Mak (2007).
The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells.
  Curr Opin Immunol, 19, 665-673.  
17641664 D.Mathis, and C.Benoist (2007).
A decade of AIRE.
  Nat Rev Immunol, 7, 645-650.  
17360567 I.Gavanescu, B.Kessler, H.Ploegh, C.Benoist, and D.Mathis (2007).
Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity.
  Proc Natl Acad Sci U S A, 104, 4583-4587.  
17466510 J.J.DeVoss, and M.S.Anderson (2007).
Lessons on immune tolerance from the monogenic disease APS1.
  Curr Opin Genet Dev, 17, 193-200.  
17403607 J.M.Schartner, C.G.Fathman, and C.M.Seroogy (2007).
Preservation of self: an overview of E3 ubiquitin ligases and T cell tolerance.
  Semin Immunol, 19, 188-196.  
17556019 M.H.Cheng, A.K.Shum, and M.S.Anderson (2007).
What's new in the Aire?
  Trends Immunol, 28, 321-327.  
17606867 M.Karbowski, A.Neutzner, and R.J.Youle (2007).
The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division.
  J Cell Biol, 178, 71-84.  
16551260 B.Kyewski, and L.Klein (2006).
A central role for central tolerance.
  Annu Rev Immunol, 24, 571-606.  
16965330 B.Stolarski, E.Pronicka, L.Korniszewski, A.Pollak, G.Kostrzewa, E.Rowińska, P.Włodarski, A.Skórka, M.Gremida, P.Krajewski, and R.Ploski (2006).
Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence.
  Clin Genet, 70, 348-354.  
16421949 C.Ramsey, S.Hässler, P.Marits, O.Kämpe, C.D.Surh, L.Peltonen, and O.Winqvist (2006).
Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator.
  Eur J Immunol, 36, 305-317.  
16728978 H.Li, S.Ilin, W.Wang, E.M.Duncan, J.Wysocka, C.D.Allis, and D.J.Patel (2006).
Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF.
  Nature, 442, 91-95.
PDB codes: 2f6j 2f6n 2fsa 2fui 2fuu
16297627 M.Bienz (2006).
The PHD finger, a nuclear protein-interaction domain.
  Trends Biochem Sci, 31, 35-40.  
16200080 K.A.Hogquist, T.A.Baldwin, and S.C.Jameson (2005).
Central tolerance: learning self-control in the thymus.
  Nat Rev Immunol, 5, 772-782.  
16111640 M.S.Anderson, E.S.Venanzi, Z.Chen, S.P.Berzins, C.Benoist, and D.Mathis (2005).
The cellular mechanism of Aire control of T cell tolerance.
  Immunity, 23, 227-239.  
16181331 P.J.Lehner, S.Hoer, R.Dodd, and L.M.Duncan (2005).
Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases.
  Immunol Rev, 207, 112-125.  
16290093 P.Peterson, and L.Peltonen (2005).
Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity.
  J Autoimmun, 25, 49-55.  
16114041 T.Ilmarinen, P.Eskelin, M.Halonen, T.Rüppell, R.Kilpikari, G.D.Torres, H.Kangas, and I.Ulmanen (2005).
Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation.
  Hum Mutat, 26, 322-331.  
16167330 X.Shi, and O.Gozani (2005).
The fellowships of the INGs.
  J Cell Biochem, 96, 1127-1136.  
16322747 Y.C.Liu, J.Penninger, and M.Karin (2005).
Immunity by ubiquitylation: a reversible process of modification.
  Nat Rev Immunol, 5, 941-952.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer