spacer
spacer

PDBsum entry 1xnu

Go to PDB code: 
protein Protein-protein interface(s) links
Signaling protein PDB id
1xnu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
52 a.a.
Theoretical model
PDB id:
1xnu
Name: Signaling protein
Title: Model of phospholamban pentamer
Structure: Cardiac phospholamban. Chain: a, b, c, d, e. Synonym: plb
Source: Oryctolagus cuniculus. Rabbit
Authors: S.L.Robia,N.C.Flohr,D.D.Thomas
Key ref:
S.L.Robia et al. (2005). Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy. Biochemistry, 44, 4302-4311. PubMed id: 15766259 DOI: 10.1021/bi0478446
Date:
05-Oct-04     Release date:   08-Feb-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P61015  (PPLA_RABIT) -  Cardiac phospholamban
Seq:
Struc:
52 a.a.
52 a.a.
Key:    PfamA domain  Secondary structure

 

 
DOI no: 10.1021/bi0478446 Biochemistry 44:4302-4311 (2005)
PubMed id: 15766259  
 
 
Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy.
S.L.Robia, N.C.Flohr, D.D.Thomas.
 
  ABSTRACT  
 
We measured in-gel fluorescence anisotropy of phospholamban (PLB) labeled with the biarsenical fluorophore FlAsH at three different sites on the cytoplasmic domain. The 6 kDa monomer bands of FlAsH-tetracysPLB showed high anisotropy (r = 0.29), reflecting null homotransfer and low mobility (S = 0.85) on the nanosecond time scale of the FlAsH fluorescence lifetime. 30 kDa bands (pentameric PLB) within the same lanes exhibited low anisotropy, suggesting intrapentameric fluorescence energy homotransfer between PLB subunits. FlAsH labels positioned at residue -6, 5, or 23 showed a graduated pattern of fluorescence depolarization corresponding to resonance energy transfer radii of 46 +/-2, 38 +/- 4, and <25 A, respectively. Pentamer anisotropy increased with heating or fluorescence photobleaching toward a maximum value similar to that determined for monomeric PLB. Fluorescence resonance energy heterotransfer was also observed in vitro and in vivo within PLB pentamers colabeled with FlAsH and the biarsenical fluorophore ReAsH. In vitro heterotransfer efficiencies were graduated by labeling position, in harmony with homotransfer results. The calculated transfer radii compare favorably to distances predicted by a computer molecular model of the phospholamban pentamer constructed from NMR solution structures. The data support a helical pinwheel model for the PLB pentamer, in which the cytoplasmic domains bend sharply outward from the central bundle of helices.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21344588 A.N.Bader, S.Hoetzl, E.G.Hofman, J.Voortman, P.M.van Bergen En Henegouwen, G.van Meer, and H.C.Gerritsen (2011).
Homo-FRET Imaging as a Tool to Quantify Protein and Lipid Clustering.
  Chemphyschem, 12, 475-483.  
21282613 K.N.Ha, L.R.Masterson, Z.Hou, R.Verardi, N.Walsh, G.Veglia, and S.L.Robia (2011).
Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A.
  Proc Natl Acad Sci U S A, 108, 2735-2740.  
20885379 C.Hoffmann, G.Gaietta, A.Zürn, S.R.Adams, S.Terrillon, M.H.Ellisman, R.Y.Tsien, and M.J.Lohse (2010).
Fluorescent labeling of tetracysteine-tagged proteins in intact cells.
  Nat Protoc, 5, 1666-1677.  
20231544 J.D.Scott, and L.F.Santana (2010).
A-kinase anchoring proteins: getting to the heart of the matter.
  Circulation, 121, 1264-1271.  
20044975 S.Chu, S.Abu-Baker, J.Lu, and G.A.Lorigan (2010).
(15)N Solid-state NMR spectroscopic studies on phospholamban at its phosphorylated form at ser-16 in aligned phospholipid bilayers.
  Biochim Biophys Acta, 1798, 312-317.  
20936620 ..I.Fábián, T.Rente, J.Szöllosi, L.Mátyus, and A.Jenei (2010).
Strength in numbers: effects of acceptor abundance on FRET efficiency.
  Chemphyschem, 11, 3713-3721.  
19527644 C.Maffeo, and A.Aksimentiev (2009).
Structure, dynamics, and ion conductance of the phospholamban pentamer.
  Biophys J, 96, 4853-4865.  
19638348 J.Bossuyt, S.Despa, F.Han, Z.Hou, S.L.Robia, J.B.Lingrel, and D.M.Bers (2009).
Isoform specificity of the Na/K-ATPase association and regulation by phospholemman.
  J Biol Chem, 284, 26749-26757.  
19450461 L.Becucci, A.Cembran, C.B.Karim, D.D.Thomas, R.Guidelli, J.Gao, and G.Veglia (2009).
On the function of pentameric phospholamban: ion channel or storage form?
  Biophys J, 96, L60-L62.  
19509339 N.J.Traaseth, L.Shi, R.Verardi, D.G.Mullen, G.Barany, and G.Veglia (2009).
Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach.
  Proc Natl Acad Sci U S A, 106, 10165-10170.
PDB code: 2kb7
19441027 P.Yan, T.Wang, G.J.Newton, T.V.Knyushko, Y.Xiong, D.J.Bigelow, T.C.Squier, and M.U.Mayer (2009).
A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking.
  Chembiochem, 10, 1507-1518.  
19089978 T.Kim, J.Lee, and W.Im (2009).
Molecular dynamics studies on structure and dynamics of phospholamban monomer and pentamer in membranes.
  Proteins, 76, 86-98.  
18287099 E.M.Kelly, Z.Hou, J.Bossuyt, D.M.Bers, and S.L.Robia (2008).
Phospholamban oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase binding measured by fluorescence resonance energy transfer in living cells.
  J Biol Chem, 283, 12202-12211.  
18081313 N.J.Traaseth, K.N.Ha, R.Verardi, L.Shi, J.J.Buffy, L.R.Masterson, and G.Veglia (2008).
Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase.
  Biochemistry, 47, 3.  
18247624 N.J.Traaseth, R.Verardi, and G.Veglia (2008).
Asymmetric methyl group labeling as a probe of membrane protein homo-oligomers by NMR spectroscopy.
  J Am Chem Soc, 130, 2400-2401.  
18708665 Z.Hou, E.M.Kelly, and S.L.Robia (2008).
Phosphomimetic mutations increase phospholamban oligomerization and alter the structure of its regulatory complex.
  J Biol Chem, 283, 28996-29003.  
17401337 C.B.Karim, Z.Zhang, and D.D.Thomas (2007).
Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes.
  Nat Protoc, 2, 42-49.  
17804809 N.J.Traaseth, R.Verardi, K.D.Torgersen, C.B.Karim, D.D.Thomas, and G.Veglia (2007).
Spectroscopic validation of the pentameric structure of phospholamban.
  Proc Natl Acad Sci U S A, 104, 14676-14681.  
17905829 S.Abu-Baker, J.X.Lu, S.Chu, K.K.Shetty, P.L.Gor'kov, and G.A.Lorigan (2007).
The structural topology of wild-type phospholamban in oriented lipid bilayers using 15N solid-state NMR spectroscopy.
  Protein Sci, 16, 2345-2349.  
17975108 S.L.Robia, K.S.Campbell, E.M.Kelly, Z.Hou, D.L.Winters, and D.D.Thomas (2007).
Förster transfer recovery reveals that phospholamban exchanges slowly from pentamers but rapidly from the SERCA regulatory complex.
  Circ Res, 101, 1123-1129.  
17066471 Z.Zhang, H.A.Remmer, D.D.Thomas, and C.B.Karim (2007).
Backbone dynamics determined by electron paramagnetic resonance to optimize solid-phase peptide synthesis of TOAC-labeled phospholamban.
  Biopolymers, 88, 29-35.  
16779491 H.Cao, B.Chen, T.C.Squier, and M.U.Mayer (2006).
CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence.
  Chem Commun (Camb), (), 2601-2603.  
16377637 M.Sun, J.L.Oakes, S.K.Ananthanarayanan, K.H.Hawley, R.Y.Tsien, S.R.Adams, and C.M.Yengo (2006).
Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer.
  J Biol Chem, 281, 5711-5717.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer