spacer
spacer

PDBsum entry 1xn8

Go to PDB code: 
protein links
Structural genomics, unknown function PDB id
1xn8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
131 a.a.
PDB id:
1xn8
Name: Structural genomics, unknown function
Title: Solution structure of bacillus subtilis protein yqbg: the northeast structural genomics consortium target sr215
Structure: Hypothetical protein yqbg. Chain: a. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Gene: yqbg. Expressed in: escherichia coli. Expression_system_taxid: 562
NMR struc: 20 models
Authors: G.Liu,L.Ma,Y.Shen,T.Acton,H.S.Atreya,R.Xiao,A.Joachimiak, G.T.Montelione,T.Szyperski,Northeast Structural Genomics Consortium (Nesg)
Key ref:
G.Liu et al. (2005). NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci U S A, 102, 10487-10492. PubMed id: 16027363 DOI: 10.1073/pnas.0504338102
Date:
04-Oct-04     Release date:   14-Dec-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P45923  (YQBG_BACSU) -  Uncharacterized protein YqbG from Bacillus subtilis (strain 168)
Seq:
Struc:
131 a.a.
131 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1073/pnas.0504338102 Proc Natl Acad Sci U S A 102:10487-10492 (2005)
PubMed id: 16027363  
 
 
NMR data collection and analysis protocol for high-throughput protein structure determination.
G.Liu, Y.Shen, H.S.Atreya, D.Parish, Y.Shao, D.K.Sukumaran, R.Xiao, A.Yee, A.Lemak, A.Bhattacharya, T.A.Acton, C.H.Arrowsmith, G.T.Montelione, T.Szyperski.
 
  ABSTRACT  
 
A standardized protocol enabling rapid NMR data collection for high-quality protein structure determination is presented that allows one to capitalize on high spectrometer sensitivity: a set of five G-matrix Fourier transform NMR experiments for resonance assignment based on highly resolved 4D and 5D spectral information is acquired in conjunction with a single simultaneous 3D 15N,13C(aliphatic),13C(aromatic)-resolved [1H,1H]-NOESY spectrum providing 1H-1H upper distance limit constraints. The protocol was integrated with methodology for semiautomated data analysis and used to solve eight NMR protein structures of the Northeast Structural Genomics Consortium pipeline. The molecular masses of the hypothetical target proteins ranged from 9 to 20 kDa with an average of approximately 14 kDa. Between 1 and 9 days of instrument time were invested per structure, which is less than approximately 10-25% of the measurement time routinely required to date with conventional approaches. The protocol presented here effectively removes data collection as a bottleneck for high-throughput solution structure determination of proteins up to at least approximately 20 kDa, while concurrently providing spectra that are highly amenable to fast and robust analysis.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Composite plot of 2D [^15N,^1H] HSQC spectra recorded at 750 MHz for target proteins. Gene name, NESG target ID, and number of amino acid residues (including tags) are indicated in the top left of each plot. At the lower right, the fraction of the peaks registered in these spectra is indicated for which sequence specific resonance assignments were obtained. For the highly -helical protein yqbG (Fig. 2), the central region is expanded in an Inset.
Figure 2.
Fig. 2. High-quality NMR solution structures of target proteins are displayed in the order of Table 1. For each structure, a ribbon drawing is shown on the left. -Helices are enumerated with roman numerals, and -strands are indicated with letters (for sequence locations of the regular secondary structure elements, see footnote of Table 1). The N and C termini of the polypeptide chains are labeled with N and C. On the right, a "sausage" representation of the backboneis shown for which a spline function was drawn through the C^ positions and where the thickness of the cylindrical rod is proportional to the mean of the global displacements of the 20 DYANA conformers calculated after superposition of the backbone heavy atoms N, C^ , and C' of the regular secondary structure elements for minimal rmsd. Hence, the thickness reflects the precision achieved for the determination of the polypeptide backbone conformation. A superposition of the best-defined side chains having the lowest global displacement for the side-chain heavy atoms also are shown (best third of all residues; for residue numbers, see footnote of Table 1) to indicate precision of the determination of side-chain conformations. Helices are shown in red, the -stands are depicted in cyan, other polypeptide segments are displayed in gray, and the side chains of the molecular core are shown in blue. The figure was generated by using the program MOLMOL (37).
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
23135467 N.Koga, R.Tatsumi-Koga, G.Liu, R.Xiao, T.B.Acton, G.T.Montelione, and D.Baker (2012).
Principles for designing ideal protein structures.
  Nature, 491, 222-227.
PDB codes: 2kl8 2ln3 2lta 2lv8 2lvb
21214860 A.H.Kwan, M.Mobli, P.R.Gooley, G.F.King, and J.P.Mackay (2011).
Macromolecular NMR spectroscopy for the non-spectroscopist.
  FEBS J, 278, 687-703.  
21153711 R.Mani, S.Vorobiev, G.V.Swapna, H.Neely, H.Janjua, C.Ciccosanti, R.Xiao, T.B.Acton, J.K.Everett, J.Hunt, and G.T.Montelione (2011).
Solution NMR and X-ray crystal structures of membrane-associated Lipoprotein-17 domain reveal a novel fold.
  J Struct Funct Genomics, 12, 27-32.  
  20920757 B.E.Coggins, R.A.Venters, and P.Zhou (2010).
Radial sampling for fast NMR: Concepts and practices over three decades.
  Prog Nucl Magn Reson Spectrosc, 57, 381-419.  
20077570 G.Liu, Y.J.Huang, R.Xiao, D.Wang, T.B.Acton, and G.T.Montelione (2010).
NMR structure of F-actin-binding domain of Arg/Abl2 from Homo sapiens.
  Proteins, 78, 1326-1330.
PDB code: 2kk1
20818668 J.L.Stark, K.A.Mercier, G.A.Mueller, T.B.Acton, R.Xiao, G.T.Montelione, and R.Powers (2010).
Solution structure and function of YndB, an AHSA1 protein from Bacillus subtilis.
  Proteins, 78, 3328-3340.
PDB code: 2kte
  19927321 K.K.Singarapu, J.L.Mills, R.Xiao, T.Acton, M.Punta, M.Fischer, B.Honig, B.Rost, G.T.Montelione, and T.Szyperski (2010).
Solution NMR structures of proteins VPA0419 from Vibrio parahaemolyticus and yiiS from Shigella flexneri provide structural coverage for protein domain family PFAM 04175.
  Proteins, 78, 779-784.
PDB codes: 2jz5 2k3i
  20944233 K.Wüthrich (2010).
NMR in a crystallography-based high-throughput protein structure-determination environment.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 1365-1366.  
21052779 W.T.Franks, H.S.Atreya, T.Szyperski, and C.M.Rienstra (2010).
GFT projection NMR spectroscopy for proteins in the solid state.
  J Biomol NMR, 48, 213-223.  
19489729 A.Edwards (2009).
Large-scale structural biology of the human proteome.
  Annu Rev Biochem, 78, 541-568.  
19455708 A.Eletsky, D.K.Sukumaran, R.Xiao, T.B.Acton, B.Rost, G.T.Montelione, and T.Szyperski (2009).
NMR structure of protein YvyC from Bacillus subtilis reveals unexpected structural similarity between two PFAM families.
  Proteins, 76, 1037-1041.
PDB code: 2hc5
19101823 G.Liu, F.Forouhar, A.Eletsky, H.S.Atreya, J.M.Aramini, R.Xiao, Y.J.Huang, M.Abashidze, J.Seetharaman, J.Liu, B.Rost, T.Acton, G.T.Montelione, J.F.Hunt, and T.Szyperski (2009).
NMR and X-RAY structures of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway.
  J Struct Funct Genomics, 10, 127-136.
PDB codes: 2k07 3e2g 3evx
19576227 M.Lei, J.Velos, A.Gardino, A.Kivenson, M.Karplus, and D.Kern (2009).
Segmented transition pathway of the signaling protein nitrogen regulatory protein C.
  J Mol Biol, 392, 823-836.  
19137264 M.P.Williamson, and C.J.Craven (2009).
Automated protein structure calculation from NMR data.
  J Biomol NMR, 43, 131-143.  
20333269 R.Powers (2009).
Advances in Nuclear Magnetic Resonance for Drug Discovery.
  Expert Opin Drug Discov, 4, 1077-1098.  
19306341 S.Sharma, H.Zheng, Y.J.Huang, A.Ertekin, Y.Hamuro, P.Rossi, R.Tejero, T.B.Acton, R.Xiao, M.Jiang, L.Zhao, L.C.Ma, G.V.Swapna, J.M.Aramini, and G.T.Montelione (2009).
Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry.
  Proteins, 76, 882-894.  
19416074 T.C.Terwilliger, D.Stuart, and S.Yokoyama (2009).
Lessons from structural genomics.
  Annu Rev Biophys, 38, 371-383.  
19284727 Y.Matsuki, M.T.Eddy, and J.Herzfeld (2009).
Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra.
  J Am Chem Soc, 131, 4648-4656.  
19039680 D.Parish, J.Benach, G.Liu, K.K.Singarapu, R.Xiao, T.Acton, M.Su, S.Bansal, J.H.Prestegard, J.Hunt, G.T.Montelione, and T.Szyperski (2008).
Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif.
  J Struct Funct Genomics, 9, 41-49.
PDB codes: 2hfd 2jzt
18431750 J.M.Aramini, S.Sharma, Y.J.Huang, G.V.Swapna, C.K.Ho, K.Shetty, K.Cunningham, L.C.Ma, L.Zhao, L.A.Owens, M.Jiang, R.Xiao, J.Liu, M.C.Baran, T.B.Acton, B.Rost, and G.T.Montelione (2008).
Solution NMR structure of the SOS response protein YnzC from Bacillus subtilis.
  Proteins, 72, 526-530.
PDB codes: 2hep 2jvd
18175328 K.K.Singarapu, R.Xiao, D.K.Sukumaran, T.Acton, G.T.Montelione, and T.Szyperski (2008).
NMR structure of protein Cgl2762 from Corynebacterium glutamicum implicated in DNA transposition reveals a helix-turn-helix motif attached to a flexibly disordered leucine zipper.
  Proteins, 70, 1650-1654.
PDB code: 2jn6
18247350 K.K.Singarapu, R.Xiao, T.Acton, B.Rost, G.T.Montelione, and T.Szyperski (2008).
NMR structure of the peptidyl-tRNA hydrolase domain from Pseudomonas syringae expands the structural coverage of the hydrolysis domains of class 1 peptide chain release factors.
  Proteins, 71, 1027-1031.
PDB code: 2jva
18827972 M.Billeter, G.Wagner, and K.Wüthrich (2008).
Solution NMR structure determination of proteins revisited.
  J Biomol NMR, 42, 155-158.  
18273680 Q.Zhang, H.S.Atreya, D.E.Kamen, M.E.Girvin, and T.Szyperski (2008).
GFT projection NMR based resonance assignment of membrane proteins: application to subunit C of E. coli F(1)F (0) ATP synthase in LPPG micelles.
  J Biomol NMR, 40, 157-163.  
18184575 S.K.Burley, A.Joachimiak, G.T.Montelione, and I.A.Wilson (2008).
Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers.
  Structure, 16, 5.  
18326625 Y.Shen, O.Lange, F.Delaglio, P.Rossi, J.M.Aramini, G.Liu, A.Eletsky, Y.Wu, K.K.Singarapu, A.Lemak, A.Ignatchenko, C.H.Arrowsmith, T.Szyperski, G.T.Montelione, D.Baker, and A.Bax (2008).
Consistent blind protein structure generation from NMR chemical shift data.
  Proc Natl Acad Sci U S A, 105, 4685-4690.  
17186527 A.Bhattacharya, R.Tejero, and G.T.Montelione (2007).
Evaluating protein structures determined by structural genomics consortia.
  Proteins, 66, 778-795.  
17342709 D.Latek, D.Ekonomiuk, and A.Kolinski (2007).
Protein structure prediction: combining de novo modeling with sparse experimental data.
  J Comput Chem, 28, 1668-1676.  
17205584 J.Korukottu, M.Bayrhuber, P.Montaville, V.Vijayan, Y.S.Jung, S.Becker, and M.Zweckstetter (2007).
Fast high-resolution protein structure determination by using unassigned NMR data.
  Angew Chem Int Ed Engl, 46, 1176-1179.
PDB code: 2j6d
17266124 K.K.Singarapu, G.Liu, R.Xiao, C.Bertonati, B.Honig, G.T.Montelione, and T.Szyperski (2007).
NMR structure of protein yjbR from Escherichia coli reveals 'double-wing' DNA binding motif.
  Proteins, 67, 501-504.
PDB code: 2fki
17612797 Y.Matsuki, H.Akutsu, and T.Fujiwara (2007).
Spectral fitting for signal assignment and structural analysis of uniformly 13C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics.
  J Biomol NMR, 38, 325-339.  
16462939 S.B.Nabuurs, C.A.Spronk, G.W.Vuister, and G.Vriend (2006).
Traditional biomolecular structure determination by NMR spectroscopy allows for major errors.
  PLoS Comput Biol, 2, e9.  
16826541 T.Szyperski, and H.S.Atreya (2006).
Principles and applications of GFT projection NMR spectroscopy.
  Magn Reson Chem, 44, S51-S60.  
16862134 V.Jaravine, I.Ibraghimov, and V.Y.Orekhov (2006).
Removal of a time barrier for high-resolution multidimensional NMR spectroscopy.
  Nat Methods, 3, 605-607.  
16927296 Y.C.Lin, G.Liu, Y.Shen, C.Bertonati, A.Yee, B.Honig, C.H.Arrowsmith, and T.Szyperski (2006).
NMR structure of protein PA2021 from Pseudomonas aeruginosa.
  Proteins, 65, 767-770.  
16374783 Y.J.Huang, R.Tejero, R.Powers, and G.T.Montelione (2006).
A topology-constrained distance network algorithm for protein structure determination from NOESY data.
  Proteins, 62, 587-603.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer