 |
PDBsum entry 1x8h
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
J Mol Biol
345:785-795
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
|
|
G.Garau,
C.Bebrone,
C.Anne,
M.Galleni,
J.M.Frère,
O.Dideberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
One strategy developed by bacteria to resist the action of beta-lactam
antibiotics is the expression of metallo-beta-lactamases. CphA from Aeromonas
hydrophila is a member of a clinically important subclass of
metallo-beta-lactamases that have only one zinc ion in their active site and for
which no structure is available. The crystal structures of wild-type CphA and
its N220G mutant show the structural features of the active site of this enzyme,
which is modeled specifically for carbapenem hydrolysis. The structure of CphA
after reaction with a carbapenem substrate, biapenem, reveals that the enzyme
traps a reaction intermediate in the active site. These three X-ray structures
have allowed us to propose how the enzyme recognizes carbapenems and suggest a
mechanistic pathway for hydrolysis of the beta-lactam. This will be relevant for
the design of metallo-beta-lactamase inhibitors as well as of antibiotics that
escape their hydrolytic activity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
|
 |
Figure 7.
Figure 7. Scheme of the proposed mechanism of β-lactam
hydrolysis by CphA, as deduced from the structures described
here.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Elsevier:
J Mol Biol
(2005,
345,
785-795)
copyright 2005.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.E.Horsfall,
Y.Izougarhane,
P.Lassaux,
N.Selevsek,
B.M.Liénard,
L.Poirel,
M.B.Kupper,
K.M.Hoffmann,
J.M.Frère,
M.Galleni,
and
C.Bebrone
(2011).
Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
|
| |
FEBS J,
278,
1252-1263.
|
 |
|
|
|
|
 |
L.Sun,
L.Zhang,
H.Zhang,
and
Z.G.He
(2011).
Characterization of a Bifunctional β-Lactamase/Ribonuclease and Its Interaction with a Chaperone-Like Protein in the Pathogen Mycobacterium tuberculosis H37Rv.
|
| |
Biochemistry (Mosc),
76,
350-358.
|
 |
|
|
|
|
 |
C.Bebrone,
P.Lassaux,
L.Vercheval,
J.S.Sohier,
A.Jehaes,
E.Sauvage,
and
M.Galleni
(2010).
Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition.
|
| |
Drugs,
70,
651-679.
|
 |
|
|
|
|
 |
S.M.Drawz,
and
R.A.Bonomo
(2010).
Three decades of beta-lactamase inhibitors.
|
| |
Clin Microbiol Rev,
23,
160-201.
|
 |
|
|
|
|
 |
Y.Yamaguchi,
N.Takashio,
J.Wachino,
Y.Yamagata,
Y.Arakawa,
K.Matsuda,
and
H.Kurosaki
(2010).
Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution.
|
| |
J Biochem,
147,
905-915.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Bebrone,
H.Delbrück,
M.B.Kupper,
P.Schlömer,
C.Willmann,
J.M.Frère,
R.Fischer,
M.Galleni,
and
K.M.Hoffmann
(2009).
The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site.
|
| |
Antimicrob Agents Chemother,
53,
4464-4471.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Xu,
and
H.Guo
(2009).
Quantum mechanical/molecular mechanical and density functional theory studies of a prototypical zinc peptidase (carboxypeptidase A) suggest a general acid-general base mechanism.
|
| |
J Am Chem Soc,
131,
9780-9788.
|
 |
|
|
|
|
 |
F.Simona,
A.Magistrato,
M.Dal Peraro,
A.Cavalli,
A.J.Vila,
and
P.Carloni
(2009).
Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme.
|
| |
J Biol Chem,
284,
28164-28171.
|
 |
|
|
|
|
 |
M.Venkatesan,
D.A.Kuntz,
and
D.R.Rose
(2009).
Human lysosomal alpha-mannosidases exhibit different inhibition and metal binding properties.
|
| |
Protein Sci,
18,
2242-2251.
|
 |
|
|
|
|
 |
A.I.Anzellotti,
and
N.P.Farrell
(2008).
Zinc metalloproteins as medicinal targets.
|
| |
Chem Soc Rev,
37,
1629-1651.
|
 |
|
|
|
|
 |
A.Tamilselvi,
and
G.Mugesh
(2008).
Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues.
|
| |
J Biol Inorg Chem,
13,
1039-1053.
|
 |
|
|
|
|
 |
B.M.Liénard,
G.Garau,
L.Horsfall,
A.I.Karsisiotis,
C.Damblon,
P.Lassaux,
C.Papamicael,
G.C.Roberts,
M.Galleni,
O.Dideberg,
J.M.Frère,
and
C.J.Schofield
(2008).
Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols.
|
| |
Org Biomol Chem,
6,
2282-2294.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Liu,
J.Momb,
P.W.Thomas,
A.Moulin,
G.A.Petsko,
W.Fast,
and
D.Ringe
(2008).
Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures.
|
| |
Biochemistry,
47,
7706-7714.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.A.Abriata,
L.J.González,
L.I.Llarrull,
P.E.Tomatis,
W.K.Myers,
A.L.Costello,
D.L.Tierney,
and
A.J.Vila
(2008).
Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive.
|
| |
Biochemistry,
47,
8590-8599.
|
 |
|
|
|
|
 |
M.F.Tioni,
L.I.Llarrull,
A.A.Poeylaut-Palena,
M.A.Martí,
M.Saggu,
G.R.Periyannan,
E.G.Mata,
B.Bennett,
D.H.Murgida,
and
A.J.Vila
(2008).
Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase.
|
| |
J Am Chem Soc,
130,
15852-15863.
|
 |
|
|
|
|
 |
M.I.Page,
and
A.Badarau
(2008).
The mechanisms of catalysis by metallo beta-lactamases.
|
| |
Bioinorg Chem Appl,
(),
576297.
|
 |
|
|
|
|
 |
M.M.Holdorf,
B.Bennett,
M.W.Crowder,
and
C.A.Makaroff
(2008).
Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein.
|
| |
J Inorg Biochem,
102,
1825-1830.
|
 |
|
|
|
|
 |
N.Sharma,
Z.Hu,
M.W.Crowder,
and
B.Bennett
(2008).
Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions.
|
| |
J Am Chem Soc,
130,
8215-8222.
|
 |
|
|
|
|
 |
V.Gupta
(2008).
Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species.
|
| |
Expert Opin Investig Drugs,
17,
131-143.
|
 |
|
|
|
|
 |
Z.Hu,
G.R.Periyannan,
and
M.W.Crowder
(2008).
Folding strategy to prepare Co(II)-substituted metallo-beta-lactamase L1.
|
| |
Anal Biochem,
378,
177-183.
|
 |
|
|
|
|
 |
F.Simona,
A.Magistrato,
D.M.Vera,
G.Garau,
A.J.Vila,
and
P.Carloni
(2007).
Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila.
|
| |
Proteins,
69,
595-605.
|
 |
|
|
|
|
 |
J.Morán-Barrio,
J.M.González,
M.N.Lisa,
A.L.Costello,
M.D.Peraro,
P.Carloni,
B.Bennett,
D.L.Tierney,
A.S.Limansky,
A.M.Viale,
and
A.J.Vila
(2007).
The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site.
|
| |
J Biol Chem,
282,
18286-18293.
|
 |
|
|
|
|
 |
L.E.Horsfall,
G.Garau,
B.M.Liénard,
O.Dideberg,
C.J.Schofield,
J.M.Frère,
and
M.Galleni
(2007).
Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila.
|
| |
Antimicrob Agents Chemother,
51,
2136-2142.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.I.Llarrull,
S.M.Fabiane,
J.M.Kowalski,
B.Bennett,
B.J.Sutton,
and
A.J.Vila
(2007).
Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity.
|
| |
J Biol Chem,
282,
18276-18285.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Dal Peraro,
A.J.Vila,
P.Carloni,
and
M.L.Klein
(2007).
Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases.
|
| |
J Am Chem Soc,
129,
2808-2816.
|
 |
|
|
|
|
 |
D.Xu,
D.Xie,
and
H.Guo
(2006).
Catalytic mechanism of class B2 metallo-beta-lactamase.
|
| |
J Biol Chem,
281,
8740-8747.
|
 |
|
|
|
|
 |
G.Estiu,
D.Suárez,
and
K.M.Merz
(2006).
Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases.
|
| |
J Comput Chem,
27,
1240-1262.
|
 |
|
|
|
|
 |
J.Spencer,
and
T.R.Walsh
(2006).
A new approach to the inhibition of metallo-beta-lactamases.
|
| |
Angew Chem Int Ed Engl,
45,
1022-1026.
|
 |
|
|
|
|
 |
K.De Vriendt,
G.Van Driessche,
B.Devreese,
C.Bebrone,
C.Anne,
J.M.Frère,
M.Galleni,
and
J.Van Beeumen
(2006).
Monitoring the zinc affinity of the metallo-beta-lactamase CphA by automated nanoESI-MS.
|
| |
J Am Soc Mass Spectrom,
17,
180-188.
|
 |
|
|
|
|
 |
N.P.Sharma,
C.Hajdin,
S.Chandrasekar,
B.Bennett,
K.W.Yang,
and
M.W.Crowder
(2006).
Mechanistic studies on the mononuclear ZnII-containing metallo-beta-lactamase ImiS from Aeromonas sobria.
|
| |
Biochemistry,
45,
10729-10738.
|
 |
|
|
|
|
 |
P.Macheboeuf,
C.Contreras-Martel,
V.Job,
O.Dideberg,
and
A.Dessen
(2006).
Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes.
|
| |
FEMS Microbiol Rev,
30,
673-691.
|
 |
|
|
|
|
 |
C.Bebrone,
C.Anne,
K.De Vriendt,
B.Devreese,
G.M.Rossolini,
J.Van Beeumen,
J.M.Frère,
and
M.Galleni
(2005).
Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis.
|
| |
J Biol Chem,
280,
28195-28202.
|
 |
|
|
|
|
 |
G.Garau,
A.M.Di Guilmi,
and
B.G.Hall
(2005).
Structure-based phylogeny of the metallo-beta-lactamases.
|
| |
Antimicrob Agents Chemother,
49,
2778-2784.
|
 |
|
|
|
|
 |
M.S.Wilke,
A.L.Lovering,
and
N.C.Strynadka
(2005).
Beta-lactam antibiotic resistance: a current structural perspective.
|
| |
Curr Opin Microbiol,
8,
525-533.
|
 |
|
|
|
|
 |
N.Sharma,
J.H.Toney,
and
P.M.Fitzgerald
(2005).
Expression, purification, crystallization and preliminary X-ray analysis of Aeromonas hydrophilia metallo-beta-lactamase.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
180-182.
|
 |
|
|
|
|
 |
P.E.Tomatis,
R.M.Rasia,
L.Segovia,
and
A.J.Vila
(2005).
Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
|
| |
Proc Natl Acad Sci U S A,
102,
13761-13766.
|
 |
|
|
|
|
 |
T.R.Walsh,
M.A.Toleman,
L.Poirel,
and
P.Nordmann
(2005).
Metallo-beta-lactamases: the quiet before the storm?
|
| |
Clin Microbiol Rev,
18,
306-325.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |