 |
PDBsum entry 1wpe
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
432:361-368
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.
|
|
C.Toyoshima,
H.Nomura,
T.Tsuda.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
P-type ion transporting ATPases are ATP-powered ion pumps that establish ion
concentration gradients across biological membranes. Transfer of bound cations
to the lumenal or extracellular side occurs while the ATPase is phosphorylated.
Here we report at 2.3 A resolution the structure of the calcium-ATPase of
skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is
crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a
stable phosphate analogue. This and other crystal structures determined
previously provide atomic models for all four principal states in the reaction
cycle. These structures show that the three cytoplasmic domains rearrange to
move six out of ten transmembrane helices, thereby changing the affinity of the
Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers
the opening of the lumenal gate and release of phosphate its closure, effected
mainly through movement of the A-domain, the actuator of transmembrane gates.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Figure 5: Details of the phosphorylation site in E2
[glyph.gif] MgF[4]^2-.
In the enlarged view (b), the atomic model of
aspartylphosphate taken unchanged from a related protein CheY
(PDB accession code 1QMP)29 is incorporated. The blue net in a
shows an omit annealed Fo -Fc map (at 5 ;
temperature factor also refined) at 2.3 Å resolution. Small
spheres represent water molecules (red) and Mg2+ (green).
MgF[4]^2- is shown in ball-and-stick representation. Large
yellow arrow indicates the expected water attack to the
aspartylphosphate (P-D351). Conserved sequence motifs are shown
in a. Broken lines in pink indicate likely hydrogen bonds, and
those in light green coordinations of Mg2+.
|
 |
Figure 6.
Figure 6: A cartoon depicting the structural changes of the
Ca^2+-ATPase during the reaction cycle, based on the crystal
structures in five different states.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2004,
432,
361-368)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Toyoshima,
S.Yonekura,
J.Tsueda,
and
S.Iwasawa
(2011).
Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+.
|
| |
Proc Natl Acad Sci U S A,
108,
1833-1838.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.P.Morth,
B.P.Pedersen,
M.J.Buch-Pedersen,
J.P.Andersen,
B.Vilsen,
M.G.Palmgren,
and
P.Nissen
(2011).
A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps.
|
| |
Nat Rev Mol Cell Biol,
12,
60-70.
|
 |
|
|
|
|
 |
K.Illergård,
A.Kauko,
and
A.Elofsson
(2011).
Why are polar residues within the membrane core evolutionary conserved?
|
| |
Proteins,
79,
79-91.
|
 |
|
|
|
|
 |
M.G.Palmgren,
and
P.Nissen
(2011).
P-type ATPases.
|
| |
Annu Rev Biophys,
40,
243-266.
|
 |
|
|
|
|
 |
P.Gourdon,
X.Y.Liu,
T.Skjørringe,
J.P.Morth,
L.B.Møller,
B.P.Pedersen,
and
P.Nissen
(2011).
Crystal structure of a copper-transporting PIB-type ATPase.
|
| |
Nature,
475,
59-64.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Mukhopadhyay,
and
A.D.Linstedt
(2011).
Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity.
|
| |
Proc Natl Acad Sci U S A,
108,
858-863.
|
 |
|
|
|
|
 |
H.Suzuki,
K.Yamasaki,
T.Daiho,
and
S.Danko
(2010).
[Mechanism of ca(2+) pump as revealed by mutations, development of stable analogs of phosphorylated intermediates, and their structural analyses].
|
| |
Yakugaku Zasshi,
130,
179-189.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Winther,
and
P.Nissen
(2010).
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
|
| |
Q Rev Biophys,
43,
501-566.
|
 |
|
|
|
|
 |
K.Abe,
K.Tani,
T.Nishizawa,
and
Y.Fujiyoshi
(2010).
[Novel ratchet mechanism of gastric H(+), K(+)-ATPase revealed by electron crystallography of two-dimensional crystals].
|
| |
Yakugaku Zasshi,
130,
205-210.
|
 |
|
|
|
|
 |
K.Kasahara,
K.Kinoshita,
and
T.Takagi
(2010).
Ligand-binding site prediction of proteins based on known fragment-fragment interactions.
|
| |
Bioinformatics,
26,
1493-1499.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
M.Bublitz,
H.Poulsen,
J.P.Morth,
and
P.Nissen
(2010).
In and out of the cation pumps: P-type ATPase structure revisited.
|
| |
Curr Opin Struct Biol,
20,
431-439.
|
 |
|
|
|
|
 |
M.L.Gumz,
I.J.Lynch,
M.M.Greenlee,
B.D.Cain,
and
C.S.Wingo
(2010).
The renal H+-K+-ATPases: physiology, regulation, and structure.
|
| |
Am J Physiol Renal Physiol,
298,
F12-F21.
|
 |
|
|
|
|
 |
N.Vedovato,
and
D.C.Gadsby
(2010).
The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.
|
| |
J Gen Physiol,
136,
63-82.
|
 |
|
|
|
|
 |
Y.Sugita,
M.Ikeguchi,
and
C.Toyoshima
(2010).
Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
107,
21465-21469.
|
 |
|
|
|
|
 |
A.K.Boal,
and
A.C.Rosenzweig
(2009).
Structural biology of copper trafficking.
|
| |
Chem Rev,
109,
4760-4779.
|
 |
|
|
|
|
 |
A.N.Holdensen,
and
J.P.Andersen
(2009).
The Length of the A-M3 Linker Is a Crucial Determinant of the Rate of the Ca2+ Transport Cycle of Sarcoplasmic Reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
284,
12258-12265.
|
 |
|
|
|
|
 |
A.Pilotelle-Bunner,
F.Cornelius,
P.Sebban,
P.W.Kuchel,
and
R.J.Clarke
(2009).
Mechanism of Mg2+ binding in the Na+,K+-ATPase.
|
| |
Biophys J,
96,
3753-3761.
|
 |
|
|
|
|
 |
D.C.Gadsby
(2009).
Ion channels versus ion pumps: the principal difference, in principle.
|
| |
Nat Rev Mol Cell Biol,
10,
344-352.
|
 |
|
|
|
|
 |
D.C.Gadsby,
A.Takeuchi,
P.Artigas,
and
N.Reyes
(2009).
Review. Peering into an ATPase ion pump with single-channel recordings.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
229-238.
|
 |
|
|
|
|
 |
H.Ogawa,
T.Shinoda,
F.Cornelius,
and
C.Toyoshima
(2009).
Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain.
|
| |
Proc Natl Acad Sci U S A,
106,
13742-13747.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.De Pont,
H.G.Swarts,
A.Karawajczyk,
G.Schaftenaar,
P.H.Willems,
and
J.B.Koenderink
(2009).
The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase.
|
| |
Pflugers Arch,
457,
623-634.
|
 |
|
|
|
|
 |
J.Jeon,
J.S.Yang,
and
S.Kim
(2009).
Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters.
|
| |
PLoS Comput Biol,
5,
e1000522.
|
 |
|
|
|
|
 |
J.P.Morth,
H.Poulsen,
M.S.Toustrup-Jensen,
V.R.Schack,
J.Egebjerg,
J.P.Andersen,
B.Vilsen,
and
P.Nissen
(2009).
The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
217-227.
|
 |
|
|
|
|
 |
J.Scherer,
and
D.H.Nies
(2009).
CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
|
| |
Mol Microbiol,
73,
601-621.
|
 |
|
|
|
|
 |
K.Abe,
K.Tani,
T.Nishizawa,
and
Y.Fujiyoshi
(2009).
Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle.
|
| |
EMBO J,
28,
1637-1643.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.Dürr,
K.Abe,
N.N.Tavraz,
and
T.Friedrich
(2009).
E2P state stabilization by the N-terminal tail of the H,K-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions.
|
| |
J Biol Chem,
284,
20147-20154.
|
 |
|
|
|
|
 |
M.J.Buch-Pedersen,
B.P.Pedersen,
B.Veierskov,
P.Nissen,
and
M.G.Palmgren
(2009).
Protons and how they are transported by proton pumps.
|
| |
Pflugers Arch,
457,
573-579.
|
 |
|
|
|
|
 |
M.Kubala,
L.Grycova,
Z.Lansky,
P.Sklenovsky,
M.Janovska,
M.Otyepka,
and
J.Teisinger
(2009).
Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.
|
| |
Biophys J,
97,
1756-1764.
|
 |
|
|
|
|
 |
M.Stolz,
E.Lewitzki,
R.Bergbauer,
W.Mäntele,
E.Grell,
and
A.Barth
(2009).
Structural changes in the catalytic cycle of the Na+,K+-ATPase studied by infrared spectroscopy.
|
| |
Biophys J,
96,
3433-3442.
|
 |
|
|
|
|
 |
R.D.Peluffo,
R.M.González-Lebrero,
S.B.Kaufman,
S.Kortagere,
B.Orban,
R.C.Rossi,
and
J.R.Berlin
(2009).
Quaternary benzyltriethylammonium ion binding to the Na,K-ATPase: a tool to investigate extracellular K+ binding reactions.
|
| |
Biochemistry,
48,
8105-8119.
|
 |
|
|
|
|
 |
S.Danko,
T.Daiho,
K.Yamasaki,
X.Liu,
and
H.Suzuki
(2009).
Formation of the stable structural analog of ADP-sensitive phosphoenzyme of Ca2+-ATPase with occluded Ca2+ by beryllium fluoride: structural changes during phosphorylation and isomerization.
|
| |
J Biol Chem,
284,
22722-22735.
|
 |
|
|
|
|
 |
T.Shinoda,
H.Ogawa,
F.Cornelius,
and
C.Toyoshima
(2009).
Crystal structure of the sodium-potassium pump at 2.4 A resolution.
|
| |
Nature,
459,
446-450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Tsuda,
and
C.Toyoshima
(2009).
Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase.
|
| |
EMBO J,
28,
1782-1791.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Liu,
T.Daiho,
K.Yamasaki,
G.Wang,
S.Danko,
and
H.Suzuki
(2009).
Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439.
|
| |
J Biol Chem,
284,
25190-25198.
|
 |
|
|
|
|
 |
Y.Huang,
H.Li,
and
Y.Bu
(2009).
Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Comput Chem,
30,
2136-2145.
|
 |
|
|
|
|
 |
A.Marchand,
A.M.Winther,
P.J.Holm,
C.Olesen,
C.Montigny,
B.Arnou,
P.Champeil,
J.D.Clausen,
B.Vilsen,
J.P.Andersen,
P.Nissen,
C.Jaxel,
J.V.Møller,
and
M.le Maire
(2008).
Crystal structure of D351A and P312A mutant forms of the mammalian sarcoplasmic reticulum Ca(2+) -ATPase reveals key events in phosphorylation and Ca(2+) release.
|
| |
J Biol Chem,
283,
14867-14882.
|
 |
|
|
|
|
 |
A.Takeuchi,
N.Reyes,
P.Artigas,
and
D.C.Gadsby
(2008).
The ion pathway through the opened Na(+),K(+)-ATPase pump.
|
| |
Nature,
456,
413-416.
|
 |
|
|
|
|
 |
C.C.Wu,
W.J.Rice,
and
D.L.Stokes
(2008).
Structure of a copper pump suggests a regulatory role for its metal-binding domain.
|
| |
Structure,
16,
976-985.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Xu,
A.M.Prasad,
G.Inesi,
and
C.Toyoshima
(2008).
Critical role of val-304 in conformational transitions that allow Ca2+ occlusion and phosphoenzyme turnover in the Ca2+ transport ATPase.
|
| |
J Biol Chem,
283,
3297-3304.
|
 |
|
|
|
|
 |
D.J.Müller,
N.Wu,
and
K.Palczewski
(2008).
Vertebrate membrane proteins: structure, function, and insights from biophysical approaches.
|
| |
Pharmacol Rev,
60,
43-78.
|
 |
|
|
|
|
 |
G.Inesi,
D.Lewis,
C.Toyoshima,
A.Hirata,
and
L.de Meis
(2008).
Conformational fluctuations of the Ca2+-ATPase in the native membrane environment. Effects of pH, temperature, catalytic substrates, and thapsigargin.
|
| |
J Biol Chem,
283,
1189-1196.
|
 |
|
|
|
|
 |
H.Eguchi,
M.Morii,
Y.Takahashi,
H.Sakai,
M.Nakano,
H.Ochiai,
A.Shirahata,
Y.Hara,
M.Kawamura,
and
K.Takeda
(2008).
Functional consequences of various leucine mutations in the M3/M4 loop of the Na+,K +-ATPase alpha-Subunit.
|
| |
J Membr Biol,
221,
133-140.
|
 |
|
|
|
|
 |
J.Andersson,
K.Hauser,
E.L.Karjalainen,
and
A.Barth
(2008).
Protonation and hydrogen bonding of Ca2+ site residues in the E2P phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase studied by a combination of infrared spectroscopy and electrostatic calculations.
|
| |
Biophys J,
94,
600-611.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
D.G.Woolley,
and
J.P.Andersen
(2008).
Critical Interaction of Actuator Domain Residues Arginine 174, Isoleucine 188, and Lysine 205 with Modulatory Nucleotide in Sarcoplasmic Reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
283,
35703-35714.
|
 |
|
|
|
|
 |
K.Manikandan,
D.Pal,
S.Ramakumar,
N.E.Brener,
S.S.Iyengar,
and
G.Seetharaman
(2008).
Functionally important segments in proteins dissected using Gene Ontology and geometric clustering of peptide fragments.
|
| |
Genome Biol,
9,
R52.
|
 |
|
|
|
|
 |
K.Yamasaki,
G.Wang,
T.Daiho,
S.Danko,
and
H.Suzuki
(2008).
Roles of Tyr122-hydrophobic cluster and K+ binding in Ca2+ -releasing process of ADP-insensitive phosphoenzyme of sarcoplasmic reticulum Ca2+ -ATPase.
|
| |
J Biol Chem,
283,
29144-29155.
|
 |
|
|
|
|
 |
M.Andersson,
J.Vincent,
D.van der Spoel,
J.Davidsson,
and
R.Neutze
(2008).
A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
|
| |
Structure,
16,
21-28.
|
 |
|
|
|
|
 |
M.Esmann,
N.U.Fedosova,
and
D.Marsh
(2008).
Osmotic stress and viscous retardation of the Na,K-ATPase ion pump.
|
| |
Biophys J,
94,
2767-2776.
|
 |
|
|
|
|
 |
M.Morii,
M.Yamauchi,
T.Ichikawa,
T.Fujii,
Y.Takahashi,
S.Asano,
N.Takeguchi,
and
H.Sakai
(2008).
Involvement of the H3O+-Lys-164 -Gln-161-Glu-345 charge transfer pathway in proton transport of gastric H+,K+-ATPase.
|
| |
J Biol Chem,
283,
16876-16884.
|
 |
|
|
|
|
 |
N.J.Traaseth,
K.N.Ha,
R.Verardi,
L.Shi,
J.J.Buffy,
L.R.Masterson,
and
G.Veglia
(2008).
Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase.
|
| |
Biochemistry,
47,
3.
|
 |
|
|
|
|
 |
O.Capendeguy,
J.Iwaszkiewicz,
O.Michielin,
and
J.D.Horisberger
(2008).
The Fourth Extracellular Loop of the {alpha} Subunit of Na,K-ATPase: FUNCTIONAL EVIDENCE FOR CLOSE PROXIMITY WITH THE SECOND EXTRACELLULAR LOOP.
|
| |
J Biol Chem,
283,
27850-27858.
|
 |
|
|
|
|
 |
R.J.Law,
K.Munson,
G.Sachs,
and
F.C.Lightstone
(2008).
An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations.
|
| |
Biophys J,
95,
2739-2749.
|
 |
|
|
|
|
 |
V.R.Schack,
J.P.Morth,
M.S.Toustrup-Jensen,
A.N.Anthonisen,
P.Nissen,
J.P.Andersen,
and
B.Vilsen
(2008).
Identification and function of a cytoplasmic k+ site of the na+, k+-ATPase.
|
| |
J Biol Chem,
283,
27982-27990.
|
 |
|
|
|
|
 |
Y.A.Mahmmoud
(2008).
Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump.
|
| |
J Biol Chem,
283,
21418-21426.
|
 |
|
|
|
|
 |
Y.A.Mahmmoud
(2008).
Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase.
|
| |
Proc Natl Acad Sci U S A,
105,
1757-1761.
|
 |
|
|
|
|
 |
A.Elofsson,
and
G.von Heijne
(2007).
Membrane protein structure: prediction versus reality.
|
| |
Annu Rev Biochem,
76,
125-140.
|
 |
|
|
|
|
 |
A.P.Einholm,
J.P.Andersen,
and
B.Vilsen
(2007).
Importance of Leu99 in transmembrane segment M1 of the Na+, K+ -ATPase in the binding and occlusion of K+.
|
| |
J Biol Chem,
282,
23854-23866.
|
 |
|
|
|
|
 |
A.P.Einholm,
J.P.Andersen,
and
B.Vilsen
(2007).
Roles of transmembrane segment M1 of Na(+),K (+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot.
|
| |
J Bioenerg Biomembr,
39,
357-366.
|
 |
|
|
|
|
 |
C.Colina,
J.J.Rosenthal,
J.A.DeGiorgis,
D.Srikumar,
N.Iruku,
and
M.Holmgren
(2007).
Structural basis of Na(+)/K(+)-ATPase adaptation to marine environments.
|
| |
Nat Struct Mol Biol,
14,
427-431.
|
 |
|
|
|
|
 |
C.Olesen,
M.Picard,
A.M.Winther,
C.Gyrup,
J.P.Morth,
C.Oxvig,
J.V.Møller,
and
P.Nissen
(2007).
The structural basis of calcium transport by the calcium pump.
|
| |
Nature,
450,
1036-1042.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Toyoshima,
Y.Norimatsu,
S.Iwasawa,
T.Tsuda,
and
H.Ogawa
(2007).
How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump.
|
| |
Proc Natl Acad Sci U S A,
104,
19831-19836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Gadsby
(2007).
Structural biology: ion pumps made crystal clear.
|
| |
Nature,
450,
957-959.
|
 |
|
|
|
|
 |
D.L.Minor
(2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
|
| |
Neuron,
54,
511-533.
|
 |
|
|
|
|
 |
E.Hughes,
J.C.Clayton,
A.Kitmitto,
M.Esmann,
and
D.A.Middleton
(2007).
Solid-state NMR and functional measurements indicate that the conserved tyrosine residues of sarcolipin are involved directly in the inhibition of SERCA1.
|
| |
J Biol Chem,
282,
26603-26613.
|
 |
|
|
|
|
 |
E.L.Karjalainen,
K.Hauser,
and
A.Barth
(2007).
Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase.
|
| |
Biochim Biophys Acta,
1767,
1310-1318.
|
 |
|
|
|
|
 |
G.Guerra,
V.V.Petrov,
K.E.Allen,
M.Miranda,
J.P.Pardo,
and
C.W.Slayman
(2007).
Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H(+)-ATPase.
|
| |
Biochim Biophys Acta,
1768,
2383-2392.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
A.N.Anthonisen,
D.G.Woolley,
B.Vilsen,
and
J.P.Andersen
(2007).
ATP-binding modes and functionally important interdomain bonds of sarcoplasmic reticulum Ca2+-ATPase revealed by mutation of glycine 438, glutamate 439, and arginine 678.
|
| |
J Biol Chem,
282,
20686-20697.
|
 |
|
|
|
|
 |
J.Fonseca,
S.Kaya,
S.Guennoun,
and
R.Rakowski
(2007).
Temporal Analysis of Valence & Electrostatics in Ion-Motive Sodium Pump.
|
| |
J Comput Electron,
6,
381-385.
|
 |
|
|
|
|
 |
J.M.Argüello,
E.Eren,
and
M.González-Guerrero
(2007).
The structure and function of heavy metal transport P1B-ATPases.
|
| |
Biometals,
20,
233-248.
|
 |
|
|
|
|
 |
J.P.Morth,
B.P.Pedersen,
M.S.Toustrup-Jensen,
T.L.Sørensen,
J.Petersen,
J.P.Andersen,
B.Vilsen,
and
P.Nissen
(2007).
Crystal structure of the sodium-potassium pump.
|
| |
Nature,
450,
1043-1049.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Hauser,
and
A.Barth
(2007).
Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release.
|
| |
Biophys J,
93,
3259-3270.
|
 |
|
|
|
|
 |
K.Moncoq,
C.A.Trieber,
and
H.S.Young
(2007).
The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.
|
| |
J Biol Chem,
282,
9748-9757.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Munson,
R.J.Law,
and
G.Sachs
(2007).
Analysis of the gastric H,K ATPase for ion pathways and inhibitor binding sites.
|
| |
Biochemistry,
46,
5398-5417.
|
 |
|
|
|
|
 |
L.Skjaerven,
I.Jonassen,
and
N.Reuter
(2007).
TMM@: a web application for the analysis of transmembrane helix mobility.
|
| |
BMC Bioinformatics,
8,
232.
|
 |
|
|
|
|
 |
L.Xie,
J.Wang,
and
P.E.Bourne
(2007).
In silico elucidation of the molecular mechanism defining the adverse effect of selective estrogen receptor modulators.
|
| |
PLoS Comput Biol,
3,
e217.
|
 |
|
|
|
|
 |
M.Takahashi,
Y.Kondou,
and
C.Toyoshima
(2007).
Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors.
|
| |
Proc Natl Acad Sci U S A,
104,
5800-5805.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.F.Rakowski,
P.Artigas,
F.Palma,
M.Holmgren,
P.De Weer,
and
D.C.Gadsby
(2007).
Sodium flux ratio in Na/K pump-channels opened by palytoxin.
|
| |
J Gen Physiol,
130,
41-54.
|
 |
|
|
|
|
 |
S.Guennoun-Lehmann,
J.E.Fonseca,
J.D.Horisberger,
and
R.F.Rakowski
(2007).
Palytoxin acts on Na(+),K (+)-ATPase but not nongastric H(+),K (+)-ATPase.
|
| |
J Membr Biol,
216,
107-116.
|
 |
|
|
|
|
 |
S.P.Andrews,
M.M.Tait,
M.Ball,
and
S.V.Ley
(2007).
Design and total synthesis of unnatural analogues of the sub-nanomolar SERCA inhibitor thapsigargin.
|
| |
Org Biomol Chem,
5,
1427-1436.
|
 |
|
|
|
|
 |
T.Daiho,
K.Yamasaki,
S.Danko,
and
H.Suzuki
(2007).
Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme.
|
| |
J Biol Chem,
282,
34429-34447.
|
 |
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
Y.Hatori,
E.Majima,
T.Tsuda,
and
C.Toyoshima
(2007).
Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase.
|
| |
J Biol Chem,
282,
25213-25221.
|
 |
|
|
|
|
 |
A.M.Jensen,
T.L.Sørensen,
C.Olesen,
J.V.Møller,
and
P.Nissen
(2006).
Modulatory and catalytic modes of ATP binding by the calcium pump.
|
| |
EMBO J,
25,
2305-2314.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Mourot,
T.Grutter,
M.Goeldner,
and
F.Kotzyba-Hibert
(2006).
Dynamic structural investigations on the torpedo nicotinic acetylcholine receptor by time-resolved photoaffinity labeling.
|
| |
Chembiochem,
7,
570-583.
|
 |
|
|
|
|
 |
A.N.Anthonisen,
J.D.Clausen,
and
J.P.Andersen
(2006).
Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
281,
31572-31582.
|
 |
|
|
|
|
 |
C.K.Johnson
(2006).
Calmodulin, conformational states, and calcium signaling. A single-molecule perspective.
|
| |
Biochemistry,
45,
14233-14246.
|
 |
|
|
|
|
 |
D.L.Stokes,
A.J.Pomfret,
W.J.Rice,
J.P.Glaves,
and
H.S.Young
(2006).
Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals.
|
| |
Biophys J,
90,
4213-4223.
|
 |
|
|
|
|
 |
E.L.Karjalainen,
A.Hardell,
and
A.Barth
(2006).
Toward a general method to observe the phosphate groups of phosphoenzymes with infrared spectroscopy.
|
| |
Biophys J,
91,
2282-2289.
|
 |
|
|
|
|
 |
F.Tadini-Buoninsegni,
G.Bartolommei,
M.R.Moncelli,
R.Guidelli,
and
G.Inesi
(2006).
Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+-ATPase.
|
| |
J Biol Chem,
281,
37720-37727.
|
 |
|
|
|
|
 |
G.von Heijne
(2006).
Membrane-protein topology.
|
| |
Nat Rev Mol Cell Biol,
7,
909-918.
|
 |
|
|
|
|
 |
J.Andersson,
and
A.Barth
(2006).
FTIR studies on the bond properties of the aspartyl phosphate moiety of the Ca2+ -ATPase.
|
| |
Biopolymers,
82,
353-357.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
D.G.Woolley,
A.N.Anthonisen,
B.Vilsen,
and
J.P.Andersen
(2006).
Asparagine 706 and glutamate 183 at the catalytic site of sarcoplasmic reticulum Ca2+-ATPase play critical but distinct roles in E2 states.
|
| |
J Biol Chem,
281,
9471-9481.
|
 |
|
|
|
|
 |
K.Hauser
(2006).
Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.
|
| |
Biopolymers,
82,
430-434.
|
 |
|
|
|
|
 |
M.Kubala
(2006).
ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments.
|
| |
Proteins,
64,
1.
|
 |
|
|
|
|
 |
N.Reyes,
and
D.C.Gadsby
(2006).
Ion permeation through the Na+,K+-ATPase.
|
| |
Nature,
443,
470-474.
|
 |
|
|
|
|
 |
P.Artigas,
and
D.C.Gadsby
(2006).
Ouabain affinity determining residues lie close to the Na/K pump ion pathway.
|
| |
Proc Natl Acad Sci U S A,
103,
12613-12618.
|
 |
|
|
|
|
 |
P.Purhonen,
K.Thomsen,
A.B.Maunsbach,
and
H.Hebert
(2006).
Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy.
|
| |
J Membr Biol,
214,
139-146.
|
 |
|
|
|
|
 |
P.W.Hildebrand,
S.Lorenzen,
A.Goede,
and
R.Preissner
(2006).
Analysis and prediction of helix-helix interactions in membrane channels and transporters.
|
| |
Proteins,
64,
253-262.
|
 |
|
|
|
|
 |
R.A.Shilling,
H.Venter,
S.Velamakanni,
A.Bapna,
B.Woebking,
S.Shahi,
and
H.W.van Veen
(2006).
New light on multidrug binding by an ATP-binding-cassette transporter.
|
| |
Trends Pharmacol Sci,
27,
195-203.
|
 |
|
|
|
|
 |
R.E.Dempski,
K.Hartung,
T.Friedrich,
and
E.Bamberg
(2006).
Fluorometric measurements of intermolecular distances between the alpha- and beta-subunits of the Na+/K+-ATPase.
|
| |
J Biol Chem,
281,
36338-36346.
|
 |
|
|
|
|
 |
R.Nuzzo,
and
C.Toyoshima
(2006).
Profile of Chikashi Toyoshima.
|
| |
Proc Natl Acad Sci U S A,
103,
1165-1167.
|
 |
|
|
|
|
 |
R.P.Clausen
(2006).
Organic chemistry at the interface to biology.
|
| |
Chembiochem,
7,
845-849.
|
 |
|
|
|
|
 |
S.E.Létant,
C.M.Schaldach,
M.R.Johnson,
A.Sawvel,
W.L.Bourcier,
and
W.D.Wilson
(2006).
Pore conductivity control at the hundred-nanometer scale: an experimental and theoretical study.
|
| |
Small,
2,
1504-1510.
|
 |
|
|
|
|
 |
V.Rodacker,
M.Toustrup-Jensen,
and
B.Vilsen
(2006).
Mutations Phe785Leu and Thr618Met in Na+,K+-ATPase, associated with familial rapid-onset dystonia parkinsonism, interfere with Na+ interaction by distinct mechanisms.
|
| |
J Biol Chem,
281,
18539-18548.
|
 |
|
|
|
|
 |
Y.Miyauchi,
T.Daiho,
K.Yamasaki,
H.Takahashi,
A.Ishida-Yamamoto,
S.Danko,
H.Suzuki,
and
H.Iizuka
(2006).
Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease.
|
| |
J Biol Chem,
281,
22882-22895.
|
 |
|
|
|
|
 |
A.C.Uhlemann,
A.Cameron,
U.Eckstein-Ludwig,
J.Fischbarg,
P.Iserovich,
F.A.Zuniga,
M.East,
A.Lee,
L.Brady,
R.K.Haynes,
and
S.Krishna
(2005).
A single amino acid residue can determine the sensitivity of SERCAs to artemisinins.
|
| |
Nat Struct Mol Biol,
12,
628-629.
|
 |
|
|
|
|
 |
A.P.Einholm,
M.Toustrup-Jensen,
J.P.Andersen,
and
B.Vilsen
(2005).
Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E2P conformation.
|
| |
Proc Natl Acad Sci U S A,
102,
11254-11259.
|
 |
|
|
|
|
 |
A.Zatti,
V.Chauvet,
V.Rajendran,
T.Kimura,
P.Pagel,
and
M.J.Caplan
(2005).
The C-terminal tail of the polycystin-1 protein interacts with the Na,K-ATPase alpha-subunit.
|
| |
Mol Biol Cell,
16,
5087-5093.
|
 |
|
|
|
|
 |
C.Li,
O.Capendeguy,
K.Geering,
and
J.D.Horisberger
(2005).
A third Na+-binding site in the sodium pump.
|
| |
Proc Natl Acad Sci U S A,
102,
12706-12711.
|
 |
|
|
|
|
 |
D.L.Stokes,
F.Delavoie,
W.J.Rice,
P.Champeil,
D.B.McIntosh,
and
J.J.Lacapère
(2005).
Structural studies of a stabilized phosphoenzyme intermediate of Ca2+-ATPase.
|
| |
J Biol Chem,
280,
18063-18072.
|
 |
|
|
|
|
 |
E.Cohen,
R.Goldshleger,
A.Shainskaya,
D.M.Tal,
C.Ebel,
M.le Maire,
and
S.J.Karlish
(2005).
Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions.
|
| |
J Biol Chem,
280,
16610-16618.
|
 |
|
|
|
|
 |
G.Inesi,
S.Hua,
C.Xu,
H.Ma,
M.Seth,
A.M.Prasad,
and
C.Sumbilla
(2005).
Studies of Ca2+ ATPase (SERCA) inhibition.
|
| |
J Bioenerg Biomembr,
37,
365-368.
|
 |
|
|
|
|
 |
G.Wang,
K.Yamasaki,
T.Daiho,
and
H.Suzuki
(2005).
Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate.
|
| |
J Biol Chem,
280,
26508-26516.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Jensen,
and
P.Nissen
(2005).
The structural basis for coupling of Ca2+ transport to ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Bioenerg Biomembr,
37,
359-364.
|
 |
|
|
|
|
 |
J.Zamoon,
F.Nitu,
C.Karim,
D.D.Thomas,
and
G.Veglia
(2005).
Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation.
|
| |
Proc Natl Acad Sci U S A,
102,
4747-4752.
|
 |
|
|
|
|
 |
K.Obara,
N.Miyashita,
C.Xu,
I.Toyoshima,
Y.Sugita,
G.Inesi,
and
C.Toyoshima
(2005).
Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+).
|
| |
Proc Natl Acad Sci U S A,
102,
14489-14496.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Segall,
A.Mezzetti,
R.Scanzano,
J.J.Gargus,
E.Purisima,
and
R.Blostein
(2005).
Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2.
|
| |
Proc Natl Acad Sci U S A,
102,
11106-11111.
|
 |
|
|
|
|
 |
L.Y.Qiu,
E.Krieger,
G.Schaftenaar,
H.G.Swarts,
P.H.Willems,
J.J.De Pont,
and
J.B.Koenderink
(2005).
Reconstruction of the complete ouabain-binding pocket of Na,K-ATPase in gastric H,K-ATPase by substitution of only seven amino acids.
|
| |
J Biol Chem,
280,
32349-32355.
|
 |
|
|
|
|
 |
M.Jidenko,
R.C.Nielsen,
T.L.Sørensen,
J.V.Møller,
M.le Maire,
P.Nissen,
and
C.Jaxel
(2005).
Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
102,
11687-11691.
|
 |
|
|
|
|
 |
M.Liu,
M.Krasteva,
and
A.Barth
(2005).
Interactions of phosphate groups of ATP and Aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: an FTIR study.
|
| |
Biophys J,
89,
4352-4363.
|
 |
|
|
|
|
 |
M.Toustrup-Jensen,
and
B.Vilsen
(2005).
Interaction between the catalytic site and the A-M3 linker stabilizes E2/E2P conformational states of Na+,K+-ATPase.
|
| |
J Biol Chem,
280,
10210-10218.
|
 |
|
|
|
|
 |
O.Capendeguy,
and
J.D.Horisberger
(2005).
The role of the third extracellular loop of the Na+,K+-ATPase alpha subunit in a luminal gating mechanism.
|
| |
J Physiol,
565,
207-218.
|
 |
|
|
|
|
 |
R.E.Dempski,
T.Friedrich,
and
E.Bamberg
(2005).
The beta subunit of the Na+/K+-ATPase follows the conformational state of the holoenzyme.
|
| |
J Gen Physiol,
125,
505-520.
|
 |
|
|
|
|
 |
S.Hua,
C.Xu,
H.Ma,
and
G.Inesi
(2005).
Interference with phosphoenzyme isomerization and inhibition of the sarco-endoplasmic reticulum Ca2+ ATPase by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene.
|
| |
J Biol Chem,
280,
17579-17583.
|
 |
|
|
|
|
 |
S.Silver,
and
l.e. .T.Phung
(2005).
A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.
|
| |
J Ind Microbiol Biotechnol,
32,
587-605.
|
 |
|
|
|
|
 |
S.Sokolov,
T.Scheuer,
and
W.A.Catterall
(2005).
Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations.
|
| |
Neuron,
47,
183-189.
|
 |
|
|
|
|
 |
Y.A.Mahmmoud,
H.Vorum,
and
F.Cornelius
(2005).
Interaction of FXYD10 (PLMS) with Na,K-ATPase from shark rectal glands. Close proximity of Cys74 of FXYD10 to Cys254 in the a domain of the alpha-subunit revealed by intermolecular thiol cross-linking.
|
| |
J Biol Chem,
280,
27776-27782.
|
 |
|
|
|
|
 |
C.Olesen,
T.L.Sørensen,
R.C.Nielsen,
J.V.Møller,
and
P.Nissen
(2004).
Dephosphorylation of the calcium pump coupled to counterion occlusion.
|
| |
Science,
306,
2251-2255.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.R.Lancaster
(2004).
Structural biology: ion pump in the movies.
|
| |
Nature,
432,
286-287.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |