spacer
spacer

PDBsum entry 1wp1

Go to PDB code: 
protein links
Membrane protein PDB id
1wp1

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
456 a.a. *
405 a.a. *
Waters ×24
* Residue conservation analysis
PDB id:
1wp1
Name: Membrane protein
Title: Crystal structure of the drug-discharge outer membrane protein, oprm
Structure: Outer membrane protein oprm. Chain: a, b. Synonym: drug-discharge outer membrane protein oprm. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Gene: oprm. Expressed in: pseudomonas aeruginosa. Expression_system_taxid: 287.
Biol. unit: Trimer (from PDB file)
Resolution:
2.56Å     R-factor:   0.255     R-free:   0.308
Authors: H.Akama,M.Kanemaki,M.Yoshimura,T.Tsukihara,T.Kashiwagi,S.Narita, A.Nakagawa,T.Nakae
Key ref:
H.Akama et al. (2004). Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem, 279, 52816-52819. PubMed id: 15507433 DOI: 10.1074/jbc.C400445200
Date:
28-Aug-04     Release date:   02-Nov-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q51487  (OPRM_PSEAE) -  Outer membrane protein OprM from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
485 a.a.
456 a.a.
Protein chain
Pfam   ArchSchema ?
Q51487  (OPRM_PSEAE) -  Outer membrane protein OprM from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
485 a.a.
405 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1074/jbc.C400445200 J Biol Chem 279:52816-52819 (2004)
PubMed id: 15507433  
 
 
Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.
H.Akama, M.Kanemaki, M.Yoshimura, T.Tsukihara, T.Kashiwagi, H.Yoneyama, S.Narita, A.Nakagawa, T.Nakae.
 
  ABSTRACT  
 
The OprM lipoprotein of Pseudomonas aeruginosa is a member of the MexAB-OprM xenobiotic-antibiotic transporter subunits that is assumed to serve as the drug discharge duct across the outer membrane. The channel structure must differ from that of the porin-type open pore because the protein facilitates the exit of antibiotics but not the entry. For better understanding of the structure-function linkage of this important pump subunit, we studied the x-ray crystallographic structure of OprM at the 2.56-angstroms resolution. The overall structure exhibited trimeric assembly of the OprM monomer that consisted mainly of two domains: the membrane-anchoring beta-barrel and the cavity-forming alpha-barrel. OprM anchors the outer membrane by two modes of membrane insertions. One is via the covalently attached NH(2)-terminal fatty acids and the other is the beta-barrel structure consensus on the outer membrane-spanning proteins. The beta-barrel had a pore opening with a diameter of about 6-8 angstroms, which is not large enough to accommodate the exit of any antibiotics. The periplasmic alpha-barrel was about 100 angstroms long formed mainly by a bundle of alpha-helices that formed a solvent-filled cavity of about 25,000 angstroms(3). The proximal end of the cavity was tightly sealed, thereby not permitting the entry of any molecule. The result of this structure was that the resting state of OprM had a small outer membrane pore and a tightly closed periplasmic end, which sounds plausible because the protein should not allow free access of antibiotics. However, these observations raised another unsolved problem about the mechanism of opening of the OprM cavity ends. The crystal structure offers possible mechanisms of pore opening and pump assembly.
 
  Selected figure(s)  
 
Figure 2.
FIG. 2. OprM cavity and the cavity ends. A, vertical views and horizontal slices of the OprM trimer. Three monomers are colored blue, red, and green. The left figure shows a vertical view of the OprM trimer. The right figures exhibited horizontal slices of the OprM trimer at the -barrel, equator, and the periplasmic end. Approximate pore diameters are shown. B, periplasmic end of the OprM trimer. Triplet Leu412 residues are shown by the space-filling model (yellow). The remaining amino acid residues are shown by a stick model.
Figure 4.
FIG. 4. Stereoscopic view of the OprM-MexB junction. Side view of the OprM-MexB junction in the trimeric form was shown. Arrays of hydrophobic amino acids, Val198-Gly199-Val200 of OprM (red, magenta, and yellow) and that of Ala^736-Leu737-Gly738 of MexB (blue, cyan, and white) were shown by the space-filling model.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2004, 279, 52816-52819) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20981744 C.C.Su, F.Long, and E.W.Yu (2011).
The Cus efflux system removes toxic ions via a methionine shuttle.
  Protein Sci, 20, 6.  
21350490 C.C.Su, F.Long, M.T.Zimmermann, K.R.Rajashankar, R.L.Jernigan, and E.W.Yu (2011).
Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
  Nature, 470, 558-562.
PDB code: 3ne5
21249122 R.Kulathila, R.Kulathila, M.Indic, and B.van den Berg (2011).
Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
  PLoS One, 6, e15610.
PDB code: 3pik
20583998 A.Welch, C.U.Awah, S.Jing, H.W.van Veen, and H.Venter (2010).
Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa.
  Biochem J, 430, 355-364.  
20525265 E.Perrin, M.Fondi, M.C.Papaleo, I.Maida, S.Buroni, M.R.Pasca, G.Riccardi, and R.Fani (2010).
Exploring the HME and HAE1 efflux systems in the genus Burkholderia.
  BMC Evol Biol, 10, 164.  
20534468 F.De Angelis, J.K.Lee, J.D.O'Connell, L.J.Miercke, K.H.Verschueren, V.Srinivasan, C.Bauvois, C.Govaerts, R.A.Robbins, J.M.Ruysschaert, R.M.Stroud, and G.Vandenbussche (2010).
Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems.
  Proc Natl Acad Sci U S A, 107, 11038-11043.
PDB code: 3lnn
20865003 F.Long, C.C.Su, M.T.Zimmermann, S.E.Boyken, K.R.Rajashankar, R.L.Jernigan, and E.W.Yu (2010).
Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
  Nature, 467, 484-488.
PDB codes: 3k07 3kso 3kss
20399187 G.Phan, H.Benabdelhak, M.B.Lascombe, P.Benas, S.Rety, M.Picard, A.Ducruix, C.Etchebest, and I.Broutin (2010).
Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
  Structure, 18, 507-517.
PDB code: 3d5k
20538726 T.C.Freeman, and W.C.Wimley (2010).
A highly accurate statistical approach for the prediction of transmembrane beta-barrels.
  Bioinformatics, 26, 1965-1974.  
19695261 C.C.Su, F.Yang, F.Long, D.Reyon, M.D.Routh, D.W.Kuo, A.K.Mokhtari, J.D.Van Ornam, K.L.Rabe, J.A.Hoy, Y.J.Lee, K.R.Rajashankar, and E.W.Yu (2009).
Crystal structure of the membrane fusion protein CusB from Escherichia coli.
  J Mol Biol, 393, 342-355.
PDB codes: 3h94 3h9i 3h9t 3ooc 3opo 3ow7
19805313 E.B.Tikhonova, V.Dastidar, V.V.Rybenkov, and H.I.Zgurskaya (2009).
Kinetic control of TolC recruitment by multidrug efflux complexes.
  Proc Natl Acad Sci U S A, 106, 16416-16421.  
19722844 H.I.Zgurskaya (2009).
Multicomponent drug efflux complexes: architecture and mechanism of assembly.
  Future Microbiol, 4, 919-932.  
19026770 H.Nikaido, and Y.Takatsuka (2009).
Mechanisms of RND multidrug efflux pumps.
  Biochim Biophys Acta, 1794, 769-781.  
19231985 H.Nikaido (2009).
Multidrug resistance in bacteria.
  Annu Rev Biochem, 78, 119-146.  
19337368 M.Reffay, Y.Gambin, H.Benabdelhak, G.Phan, N.Taulier, A.Ducruix, R.S.Hodges, and W.Urbach (2009).
Tracking membrane protein association in model membranes.
  PLoS ONE, 4, e5035.  
19289182 R.Misra, and V.N.Bavro (2009).
Assembly and transport mechanism of tripartite drug efflux systems.
  Biochim Biophys Acta, 1794, 817-825.  
19761586 S.Buroni, M.R.Pasca, R.S.Flannagan, S.Bazzini, A.Milano, I.Bertani, V.Venturi, M.A.Valvano, and G.Riccardi (2009).
Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance.
  BMC Microbiol, 9, 200.  
19713238 T.Mima, N.Kohira, Y.Li, H.Sekiya, W.Ogawa, T.Kuroda, and T.Tsuchiya (2009).
Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa.
  Microbiology, 155, 3509-3517.  
19678712 X.Z.Li, and H.Nikaido (2009).
Efflux-mediated drug resistance in bacteria: an update.
  Drugs, 69, 1555-1623.  
18535149 A.L.Davidson, E.Dassa, C.Orelle, and J.Chen (2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
  Microbiol Mol Biol Rev, 72, 317.  
18024521 G.Krishnamoorthy, E.B.Tikhonova, and H.I.Zgurskaya (2008).
Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB.
  J Bacteriol, 190, 691-698.  
18439872 H.Song, R.Sandie, Y.Wang, M.A.Andrade-Navarro, and M.Niederweis (2008).
Identification of outer membrane proteins of Mycobacterium tuberculosis.
  Tuberculosis (Edinb), 88, 526-544.  
18389081 I.Bunikis, K.Denker, Y.Ostberg, C.Andersen, R.Benz, and S.Bergström (2008).
An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds.
  PLoS Pathog, 4, e1000009.  
18835894 L.Vaccaro, K.A.Scott, and M.S.Sansom (2008).
Gating at both ends and breathing in the middle: conformational dynamics of TolC.
  Biophys J, 95, 5681-5691.  
18676884 M.Sugimura, H.Maseda, H.Hanaki, and T.Nakae (2008).
Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa.
  Antimicrob Agents Chemother, 52, 4141-4144.  
18485072 T.Gristwood, P.C.Fineran, L.Everson, and G.P.Salmond (2008).
PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006.
  Mol Microbiol, 69, 418-435.  
18725450 T.Hatfaludi, K.Al-Hasani, M.Dunstone, J.Boyce, and B.Adler (2008).
Characterization of TolC efflux pump proteins from Pasteurella multocida.
  Antimicrob Agents Chemother, 52, 4166-4171.  
17159924 O.Lomovskaya, H.I.Zgurskaya, M.Totrov, and W.J.Watkins (2007).
Waltzing transporters and 'the dance macabre' between humans and bacteria.
  Nat Rev Drug Discov, 6, 56-65.  
17665187 S.Trépout, J.C.Taveau, S.Mornet, H.Benabdelhak, A.Ducruix, and O.Lambert (2007).
Organization of reconstituted lipoprotein MexA onto supported lipid membrane.
  Eur Biophys J, 36, 1029-1037.  
16707668 G.Vediyappan, T.Borisova, and J.A.Fralick (2006).
Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli.
  J Bacteriol, 188, 3757-3762.  
16717405 H.Yoneyama, and R.Katsumata (2006).
Antibiotic resistance in bacteria and its future for novel antibiotic development.
  Biosci Biotechnol Biochem, 70, 1060-1075.  
16531241 J.Mikolosko, K.Bobyk, H.I.Zgurskaya, and P.Ghosh (2006).
Conformational flexibility in the multidrug efflux system protein AcrA.
  Structure, 14, 577-587.
PDB code: 2f1m
16614254 L.J.Piddock (2006).
Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.
  Clin Microbiol Rev, 19, 382-402.  
16648168 L.Vaccaro, V.Koronakis, and M.S.Sansom (2006).
Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA.
  Biophys J, 91, 558-564.  
16857052 P.Guglierame, M.R.Pasca, E.De Rossi, S.Buroni, P.Arrigo, G.Manina, and G.Riccardi (2006).
Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome.
  BMC Microbiol, 6, 66.  
16451186 S.Eda, H.Maseda, E.Yoshihara, and T.Nakae (2006).
Assignment of the outer-membrane-subunit-selective domain of the membrane fusion protein in the tripartite xenobiotic efflux pump of Pseudomonas aeruginosa.
  FEMS Microbiol Lett, 254, 101-107.  
16537437 S.O.Meroueh, K.Z.Bencze, D.Hesek, M.Lee, J.F.Fisher, T.L.Stemmler, and S.Mobashery (2006).
Three-dimensional structure of the bacterial cell wall peptidoglycan.
  Proc Natl Acad Sci U S A, 103, 4404-4409.  
16461891 Y.Gambin, R.Lopez-Esparza, M.Reffay, E.Sierecki, N.S.Gov, M.Genest, R.S.Hodges, and W.Urbach (2006).
Lateral mobility of proteins in liquid membranes revisited.
  Proc Natl Acad Sci U S A, 103, 2098-2102.  
16158236 G.Grass, B.Fricke, and D.H.Nies (2005).
Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations.
  Biometals, 18, 437-448.  
  16511029 I.Broutin, H.Benabdelhak, X.Moreel, M.B.Lascombe, D.Lerouge, and A.Ducruix (2005).
Expression, purification, crystallization and preliminary X-ray studies of the outer membrane efflux proteins OprM and OprN from Pseudomonas aeruginosa.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 315-318.  
15743933 O.Lomovskaya, and M.Totrov (2005).
Vacuuming the periplasm.
  J Bacteriol, 187, 1879-1883.  
16030246 R.C.Woolley, G.Vediyappan, M.Anderson, M.Lackey, B.Ramasubramanian, B.Jiangping, T.Borisova, J.A.Colmer, A.N.Hamood, C.S.McVay, and J.A.Fralick (2005).
Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli.
  J Bacteriol, 187, 5500-5503.  
16168577 V.S.Braz, and M.V.Marques (2005).
Genes involved in cadmium resistance in Caulobacter crescentus.
  FEMS Microbiol Lett, 251, 289-295.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer