 |
PDBsum entry 1vca
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion protein
|
PDB id
|
|
|
|
1vca
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Cell adhesion protein
|
 |
|
Title:
|
 |
Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 angstroms resolution
|
|
Structure:
|
 |
Human vascular cell adhesion molecule-1. Chain: a, b. Synonym: vcam-d1,2. Engineered: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Strain: hw1110. Expressed in: escherichia coli. Expression_system_taxid: 562
|
|
Resolution:
|
 |
|
|
Authors:
|
 |
E.Y.Jones,K.Harlos,M.J.Bottomley,R.C.Robinson,P.C.Driscoll, R.M.Edwards,J.M.Clements,T.J.Dudgeon,D.I.Stuart
|
|
Key ref:
|
 |
E.Y.Jones
et al.
(1995).
Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution.
Nature,
373,
539-544.
PubMed id:
|
 |
|
Date:
|
 |
|
21-Mar-95
|
Release date:
|
15-Sep-95
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P19320
(VCAM1_HUMAN) -
Vascular cell adhesion protein 1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
739 a.a.
199 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
373:539-544
(1995)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution.
|
|
E.Y.Jones,
K.Harlos,
M.J.Bottomley,
R.C.Robinson,
P.C.Driscoll,
R.M.Edwards,
J.M.Clements,
T.J.Dudgeon,
D.I.Stuart.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The cell-surface glycoprotein vascular cell adhesion molecule-1 (VCAM-1; ref. 1)
mediates intercellular adhesion by specific binding to the integrin very-late
antigen-4 (VLA-4, alpha 4 beta 1; ref. 3). VCAM-1, with the intercellular
adhesion molecules ICAM-1, ICAM-2, ICAM-3 and the mucosal vascular addressin
MAd-CAM-1, forms an integrin-binding subgroup of the immunoglobulin superfamily.
In addition to their clinical relevance in inflammation, these molecules act as
cellular receptors for viral and parasitic agents. The predominant form of
VCAM-1 in vivo has an amino-terminal extracellular region comprising seven
immunoglobulin-like domains. Functional studies have identified a conserved
integrin-binding motif in domains 1 and 4, variants of which are present in the
N-terminal domain of all members of the immunoglobulin superfamily subgroup. We
report here the crystal structure of a VLA-4-binding fragment composed of the
first two domains of VCAM-1. The integrin-binding motif (Q38IDSPL) is highly
exposed and forms the N-terminal region of the loop between beta-strands C and D
of domain 1. This motif exhibits a distinctive conformation which we predict
will be common to all the integrin-binding IgSF molecules. These, and additional
data, map VLA-4 binding to the face of the CFG beta-sheet, the surface
previously identified as the site for intercellular adhesive interactions
between members of the immunoglobulin superfamily.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
X.L.Yu,
T.Hu,
J.M.Du,
J.P.Ding,
X.M.Yang,
J.Zhang,
B.Yang,
X.Shen,
Z.Zhang,
W.D.Zhong,
N.Wen,
H.Jiang,
P.Zhu,
and
Z.N.Chen
(2008).
Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion.
|
| |
J Biol Chem,
283,
18056-18065.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Takagi
(2007).
Structural basis for ligand recognition by integrins.
|
| |
Curr Opin Cell Biol,
19,
557-564.
|
 |
|
|
|
|
 |
H.Buschmann,
J.Chan,
L.Sanchez-Pulido,
M.A.Andrade-Navarro,
J.H.Doonan,
and
C.W.Lloyd
(2006).
Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion.
|
| |
Curr Biol,
16,
1938-1943.
|
 |
|
|
|
|
 |
A.Zubia,
L.Mendoza,
S.Vivanco,
E.Aldaba,
T.Carrascal,
B.Lecea,
A.Arrieta,
T.Zimmerman,
F.Vidal-Vanaclocha,
and
F.P.Cossío
(2005).
Application of Stereocontrolled Stepwise [3+2] Cycloadditions to the Preparation of Inhibitors of alpha(4)beta(1)-Integrin-Mediated Hepatic Melanoma Metastasis.
|
| |
Angew Chem Int Ed Engl,
44,
2903-2907.
|
 |
|
|
|
|
 |
M.Król,
I.Roterman,
B.Piekarska,
L.Konieczny,
J.Rybarska,
B.Stopa,
and
P.Spólnik
(2005).
Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction.
|
| |
Proteins,
59,
545-554.
|
 |
|
|
|
|
 |
H.J.Huttunen,
and
H.Rauvala
(2004).
Amphoterin as an extracellular regulator of cell motility: from discovery to disease.
|
| |
J Intern Med,
255,
351-366.
|
 |
|
|
|
|
 |
J.Dando,
K.W.Wilkinson,
S.Ortlepp,
D.J.King,
and
R.L.Brady
(2002).
A reassessment of the MAdCAM-1 structure and its role in integrin recognition.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
233-241.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Arnaout,
S.L.Goodman,
and
J.P.Xiong
(2002).
Coming to grips with integrin binding to ligands.
|
| |
Curr Opin Cell Biol,
14,
641-651.
|
 |
|
|
|
|
 |
Z.Li,
M.J.Calzada,
J.M.Sipes,
J.A.Cashel,
H.C.Krutzsch,
D.S.Annis,
D.F.Mosher,
and
D.D.Roberts
(2002).
Interactions of thrombospondins with alpha4beta1 integrin and CD47 differentially modulate T cell behavior.
|
| |
J Cell Biol,
157,
509-519.
|
 |
|
|
|
|
 |
M.Kvansakul,
M.Hopf,
A.Ries,
R.Timpl,
and
E.Hohenester
(2001).
Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan.
|
| |
EMBO J,
20,
5342-5346.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Taylor,
M.Bilsland,
and
M.D.Walkinshaw
(2001).
A new conformation of the integrin-binding fragment of human VCAM-1 crystallizes in a highly hydrated packing arrangement.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1579-1583.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.C.Deivanayagam,
R.L.Rich,
M.Carson,
R.T.Owens,
S.Danthuluri,
T.Bice,
M.Höök,
and
S.V.Narayana
(2000).
Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein.
|
| |
Structure,
8,
67-78.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Stauber,
A.D.DiGabriele,
and
W.A.Hendrickson
(2000).
Structural interactions of fibroblast growth factor receptor with its ligands.
|
| |
Proc Natl Acad Sci U S A,
97,
49-54.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Callebaut,
D.Gilgès,
I.Vigon,
and
J.P.Mornon
(2000).
HYR, an extracellular module involved in cellular adhesion and related to the immunoglobulin-like fold.
|
| |
Protein Sci,
9,
1382-1390.
|
 |
|
|
|
|
 |
K.S.Taraszka,
J.M.Higgins,
K.Tan,
D.A.Mandelbrot,
J.H.Wang,
and
M.B.Brenner
(2000).
Molecular basis for leukocyte integrin alpha(E)beta(7) adhesion to epithelial (E)-cadherin.
|
| |
J Exp Med,
191,
1555-1567.
|
 |
|
|
|
|
 |
M.A.Bowen,
A.A.Aruffo,
and
J.Bajorath
(2000).
Cell surface receptors and their ligands: in vitro analysis of CD6-CD166 interactions.
|
| |
Proteins,
40,
420-428.
|
 |
|
|
|
|
 |
M.J.Humphries
(2000).
Integrin cell adhesion receptors and the concept of agonism.
|
| |
Trends Pharmacol Sci,
21,
29-32.
|
 |
|
|
|
|
 |
X.Jiang,
O.Gurel,
E.A.Mendiaz,
G.W.Stearns,
C.L.Clogston,
H.S.Lu,
T.D.Osslund,
R.S.Syed,
K.E.Langley,
and
W.A.Hendrickson
(2000).
Structure of the active core of human stem cell factor and analysis of binding to its receptor kit.
|
| |
EMBO J,
19,
3192-3203.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Kasper,
H.Rasmussen,
V.Berezin,
E.Bock,
and
I.K.Larsen
(1999).
Expression, crystallization and preliminary X-ray analysis of the two amino-terminal Ig domains of the neural cell adhesion molecule (NCAM).
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1598-1600.
|
 |
|
|
|
|
 |
F.Peri,
D.Grell,
P.Dumy,
Y.Yokokawa,
K.Welzenbach,
G.Weitz-Schmidt,
and
M.Mutter
(1999).
Assembly of binding loops on aromatic templates as VCAM-1 mimetics.
|
| |
J Pept Sci,
5,
313-322.
|
 |
|
|
|
|
 |
J.M.Casasnovas,
C.Pieroni,
and
T.A.Springer
(1999).
Lymphocyte function-associated antigen-1 binding residues in intercellular adhesion molecule-2 (ICAM-2) and the integrin binding surface in the ICAM subfamily.
|
| |
Proc Natl Acad Sci U S A,
96,
3017-3022.
|
 |
|
|
|
|
 |
M.Bycroft,
A.Bateman,
J.Clarke,
S.J.Hamill,
R.Sandford,
R.L.Thomas,
and
C.Chothia
(1999).
The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease.
|
| |
EMBO J,
18,
297-305.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.W.Berg,
Y.Yang,
K.Lehnert,
and
G.W.Krissansen
(1999).
Mouse M290 is the functional homologue of the human mucosal lymphocyte integrin HML-1: antagonism between the integrin ligands E-cadherin and RGD tripeptide.
|
| |
Immunol Cell Biol,
77,
337-344.
|
 |
|
|
|
|
 |
C.Quan,
N.J.Skelton,
K.Clark,
D.Y.Jackson,
M.E.Renz,
H.H.Chiu,
S.M.Keating,
M.H.Beresini,
S.Fong,
and
D.R.Artis
(1998).
Transfer of a protein binding epitope to a minimal designed peptide.
|
| |
Biopolymers,
47,
265-275.
|
 |
|
|
|
|
 |
I.D.Campbell
(1998).
The modular architecture of leukocyte cell-surface receptors.
|
| |
Immunol Rev,
163,
11-18.
|
 |
|
|
|
|
 |
J.Bella,
P.R.Kolatkar,
C.W.Marlor,
J.M.Greve,
and
M.G.Rossmann
(1998).
The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand.
|
| |
Proc Natl Acad Sci U S A,
95,
4140-4145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Banères,
F.Roquet,
M.Green,
H.LeCalvez,
and
J.Parello
(1998).
The cation-binding domain from the alpha subunit of integrin alpha5 beta1 is a minimal domain for fibronectin recognition.
|
| |
J Biol Chem,
273,
24744-24753.
|
 |
|
|
|
|
 |
J.M.Casasnovas,
T.Stehle,
J.H.Liu,
J.H.Wang,
and
T.A.Springer
(1998).
A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1.
|
| |
Proc Natl Acad Sci U S A,
95,
4134-4139.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Higgins,
D.A.Mandlebrot,
S.K.Shaw,
G.J.Russell,
E.A.Murphy,
Y.T.Chen,
W.J.Nelson,
C.M.Parker,
and
M.B.Brenner
(1998).
Direct and regulated interaction of integrin alphaEbeta7 with E-cadherin.
|
| |
J Cell Biol,
140,
197-210.
|
 |
|
|
|
|
 |
J.Wang,
and
T.A.Springer
(1998).
Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses.
|
| |
Immunol Rev,
163,
197-215.
|
 |
|
|
|
|
 |
M.J.Humphries,
and
P.Newham
(1998).
The structure of cell-adhesion molecules.
|
| |
Trends Cell Biol,
8,
78-83.
|
 |
|
|
|
|
 |
N.Verdaguer,
N.Sevilla,
M.L.Valero,
D.Stuart,
E.Brocchi,
D.Andreu,
E.Giralt,
E.Domingo,
M.G.Mateu,
and
I.Fita
(1998).
A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus: implications for intratypic antigenic variation.
|
| |
J Virol,
72,
739-748.
|
 |
|
|
|
|
 |
R.Urfer,
P.Tsoulfas,
L.O'Connell,
J.A.Hongo,
W.Zhao,
and
L.G.Presta
(1998).
High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors.
|
| |
J Biol Chem,
273,
5829-5840.
|
 |
|
|
|
|
 |
S.Ichikawa,
H.Hatanaka,
T.Yuuki,
N.Iwamoto,
S.Kojima,
C.Nishiyama,
K.Ogura,
Y.Okumura,
and
F.Inagaki
(1998).
Solution structure of Der f 2, the major mite allergen for atopic diseases.
|
| |
J Biol Chem,
273,
356-360.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.J.Davis,
S.Ikemizu,
M.K.Wild,
and
P.A.van der Merwe
(1998).
CD2 and the nature of protein interactions mediating cell-cell recognition.
|
| |
Immunol Rev,
163,
217-236.
|
 |
|
|
|
|
 |
Y.Yokosaki,
N.Matsuura,
S.Higashiyama,
I.Murakami,
M.Obara,
M.Yamakido,
N.Shigeto,
J.Chen,
and
D.Sheppard
(1998).
Identification of the ligand binding site for the integrin alpha9 beta1 in the third fibronectin type III repeat of tenascin-C.
|
| |
J Biol Chem,
273,
11423-11428.
|
 |
|
|
|
|
 |
A.P.May,
R.C.Robinson,
R.T.Aplin,
P.Bradfield,
P.R.Crocker,
and
E.Y.Jones
(1997).
Expression, crystallization, and preliminary X-ray analysis of a sialic acid-binding fragment of sialoadhesin in the presence and absence of ligand.
|
| |
Protein Sci,
6,
717-721.
|
 |
|
|
|
|
 |
C.Chothia,
and
E.Y.Jones
(1997).
The molecular structure of cell adhesion molecules.
|
| |
Annu Rev Biochem,
66,
823-862.
|
 |
|
|
|
|
 |
C.G.Gahmberg,
M.Tolvanen,
and
P.Kotovuori
(1997).
Leukocyte adhesion--structure and function of human leukocyte beta2-integrins and their cellular ligands.
|
| |
Eur J Biochem,
245,
215-232.
|
 |
|
|
|
|
 |
C.Kisker,
H.Schindelin,
A.Pacheco,
W.A.Wehbi,
R.M.Garrett,
K.V.Rajagopalan,
J.H.Enemark,
and
D.C.Rees
(1997).
Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase.
|
| |
Cell,
91,
973-983.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.J.Leahy
(1997).
Implications of atomic-resolution structures for cell adhesion.
|
| |
Annu Rev Cell Dev Biol,
13,
363-393.
|
 |
|
|
|
|
 |
D.L.Bodian,
S.J.Davis,
B.P.Morgan,
and
N.K.Rushmere
(1997).
Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59.
|
| |
J Exp Med,
185,
507-516.
|
 |
|
|
|
|
 |
E.Domingo,
and
J.J.Holland
(1997).
RNA virus mutations and fitness for survival.
|
| |
Annu Rev Microbiol,
51,
151-178.
|
 |
|
|
|
|
 |
G.V.Louie,
W.Yang,
M.E.Bowman,
and
S.Choe
(1997).
Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor.
|
| |
Mol Cell,
1,
67-78.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Loftus,
and
R.C.Liddington
(1997).
Cell adhesion in vascular biology. New insights into integrin-ligand interaction.
|
| |
J Clin Invest,
99,
2302-2306.
|
 |
|
|
|
|
 |
J.P.Newton,
C.D.Buckley,
E.Y.Jones,
and
D.L.Simmons
(1997).
Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31.
|
| |
J Biol Chem,
272,
20555-20563.
|
 |
|
|
|
|
 |
K.L.Fisher,
J.Lu,
L.Riddle,
K.J.Kim,
L.G.Presta,
and
S.C.Bodary
(1997).
Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.
|
| |
Mol Biol Cell,
8,
501-515.
|
 |
|
|
|
|
 |
P.Newham,
S.E.Craig,
G.N.Seddon,
N.R.Schofield,
A.Rees,
R.M.Edwards,
E.Y.Jones,
and
M.J.Humphries
(1997).
Alpha4 integrin binding interfaces on VCAM-1 and MAdCAM-1. Integrin binding footprints identify accessory binding sites that play a role in integrin specificity.
|
| |
J Biol Chem,
272,
19429-19440.
|
 |
|
|
|
|
 |
R.J.Gumina,
P.J.Newman,
D.Kenny,
D.C.Warltier,
and
G.J.Gross
(1997).
The leukocyte cell adhesion cascade and its role in myocardial ischemia-reperfusion injury.
|
| |
Basic Res Cardiol,
92,
201-213.
|
 |
|
|
|
|
 |
S.Fong,
S.Jones,
M.E.Renz,
H.H.Chiu,
A.M.Ryan,
L.G.Presta,
and
D.Jackson
(1997).
Mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Its binding motif for alpha 4 beta 7 and role in experimental colitis.
|
| |
Immunol Res,
16,
299-311.
|
 |
|
|
|
|
 |
T.Sugimori,
D.L.Griffith,
and
M.A.Arnaout
(1997).
Emerging paradigms of integrin ligand binding and activation.
|
| |
Kidney Int,
51,
1454-1462.
|
 |
|
|
|
|
 |
A.Bateman,
M.Jouet,
J.MacFarlane,
J.S.Du,
S.Kenwrick,
and
C.Chothia
(1996).
Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders.
|
| |
EMBO J,
15,
6050-6059.
|
 |
|
|
|
|
 |
A.Bateman,
S.R.Eddy,
and
C.Chothia
(1996).
Members of the immunoglobulin superfamily in bacteria.
|
| |
Protein Sci,
5,
1939-1941.
|
 |
|
|
|
|
 |
A.K.Basak,
P.Gouet,
J.Grimes,
P.Roy,
and
D.Stuart
(1996).
Crystal structure of the top domain of African horse sickness virus VP7: comparisons with bluetongue virus VP7.
|
| |
J Virol,
70,
3797-3806.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Y.Jones
(1996).
Three-dimensional structure of cell adhesion molecules.
|
| |
Curr Opin Cell Biol,
8,
602-608.
|
 |
|
|
|
|
 |
J.E.Skonier,
M.A.Bowen,
J.Emswiler,
A.Aruffo,
and
J.Bajorath
(1996).
Recognition of diverse proteins by members of the immunoglobulin superfamily: delineation of the receptor binding site in the human CD6 ligand ALCAM.
|
| |
Biochemistry,
35,
12287-12291.
|
 |
|
|
|
|
 |
J.H.Viles,
J.B.Mitchell,
S.L.Gough,
P.M.Doyle,
C.J.Harris,
P.J.Sadler,
and
J.M.Thornton
(1996).
Multiple solution conformations of the integrin-binding cyclic pentapeptide cyclo(-Ser-D-Leu-Asp-Val-Pro-). Analysis of the (phi, psi) space available to cyclic pentapeptides.
|
| |
Eur J Biochem,
242,
352-362.
|
 |
|
|
|
|
 |
L.B.Klickstein,
M.R.York,
A.R.Fougerolles,
and
T.A.Springer
(1996).
Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte function-associated antigen 1 (LFA-1).
|
| |
J Biol Chem,
271,
23920-23927.
|
 |
|
|
|
|
 |
M.Raghavan,
and
P.J.Bjorkman
(1996).
Fc receptors and their interactions with immunoglobulins.
|
| |
Annu Rev Cell Dev Biol,
12,
181-220.
|
 |
|
|
|
|
 |
N.K.Thomsen,
V.Soroka,
P.H.Jensen,
V.Berezin,
V.V.Kiselyov,
E.Bock,
and
F.M.Poulsen
(1996).
The three-dimensional structure of the first domain of neural cell adhesion molecule.
|
| |
Nat Struct Biol,
3,
581-585.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Bork,
A.K.Downing,
B.Kieffer,
and
I.D.Campbell
(1996).
Structure and distribution of modules in extracellular proteins.
|
| |
Q Rev Biophys,
29,
119-167.
|
 |
|
|
|
|
 |
P.Newham,
and
M.J.Humphries
(1996).
Integrin adhesion receptors: structure, function and implications for biomedicine.
|
| |
Mol Med Today,
2,
304-313.
|
 |
|
|
|
|
 |
P.R.Crocker,
and
T.Feizi
(1996).
Carbohydrate recognition systems: functional triads in cell-cell interactions.
|
| |
Curr Opin Struct Biol,
6,
679-691.
|
 |
|
|
|
|
 |
S.Improta,
A.S.Politou,
and
A.Pastore
(1996).
Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity.
|
| |
Structure,
4,
323-337.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kelm,
R.Schauer,
and
P.R.Crocker
(1996).
The Sialoadhesins--a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily.
|
| |
Glycoconj J,
13,
913-926.
|
 |
|
|
|
|
 |
A.Bateman,
and
C.Chothia
(1995).
Outline structures for the extracellular domains of the fibroblast growth factor receptors.
|
| |
Nat Struct Biol,
2,
1068-1074.
|
 |
|
|
|
|
 |
A.de Fougerolles,
and
T.A.Springer
(1995).
Ideas crystallized on immunoglobulin superfamily-integrin interactions.
|
| |
Chem Biol,
2,
639-643.
|
 |
|
|
|
|
 |
C.Huang,
and
T.A.Springer
(1995).
A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1).
|
| |
J Biol Chem,
270,
19008-19016.
|
 |
|
|
|
|
 |
D.I.Stuart,
and
E.Y.Jones
(1995).
Recognition at the cell surface: recent structural insights.
|
| |
Curr Opin Struct Biol,
5,
735-743.
|
 |
|
|
|
|
 |
D.Stuart,
and
P.Gouet
(1995).
Viral envelope glycoproteins swing into action.
|
| |
Structure,
3,
645-648.
|
 |
|
|
|
|
 |
J.Bajorath,
M.A.Bowen,
and
A.Aruffo
(1995).
Molecular model of the N-terminal receptor-binding domain of the human CD6 ligand ALCAM.
|
| |
Protein Sci,
4,
1644-1647.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Hughes,
C.J.Ward,
B.Peral,
R.Aspinwall,
K.Clark,
J.L.San Millán,
V.Gamble,
and
P.C.Harris
(1995).
The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains.
|
| |
Nat Genet,
10,
151-160.
|
 |
|
|
|
|
 |
J.M.Bergelson,
and
M.E.Hemler
(1995).
Integrin-ligand binding. Do integrins use a 'MIDAS touch' to grasp an Asp?
|
| |
Curr Biol,
5,
615-617.
|
 |
|
|
|
|
 |
J.Miller,
R.Knorr,
M.Ferrone,
R.Houdei,
C.P.Carron,
and
M.L.Dustin
(1995).
Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1.
|
| |
J Exp Med,
182,
1231-1241.
|
 |
|
|
|
|
 |
L.Shapiro,
P.D.Kwong,
A.M.Fannon,
D.R.Colman,
and
W.A.Hendrickson
(1995).
Considerations on the folding topology and evolutionary origin of cadherin domains.
|
| |
Proc Natl Acad Sci U S A,
92,
6793-6797.
|
 |
|
|
|
|
 |
M.Pfuhl,
and
A.Pastore
(1995).
Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set.
|
| |
Structure,
3,
391-401.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |