spacer
spacer

PDBsum entry 1v5d

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1v5d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
386 a.a. *
Ligands
PIN
Waters ×1003
* Residue conservation analysis
PDB id:
1v5d
Name: Hydrolase
Title: The crystal structure of the active form chitosanase from bacillus sp. K17 at ph6.4
Structure: Chitosanase. Chain: a, b. Ec: 3.2.1.132
Source: Bacillus sp.. Organism_taxid: 1409. Strain: k17
Resolution:
1.50Å     R-factor:   0.167     R-free:   0.189
Authors: W.Adachi,S.Shimizu,T.Sunami,T.Fukazawa,M.Suzuki,R.Yatsunami, S.Nakamura,A.Takenaka
Key ref:
W.Adachi et al. (2004). Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J Mol Biol, 343, 785-795. PubMed id: 15465062 DOI: 10.1016/j.jmb.2004.08.028
Date:
22-Nov-03     Release date:   07-Dec-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9ALZ1  (Q9ALZ1_9BACI) -  Glucanase from Bacillus sp. KCTC 0377BP
Seq:
Struc:
453 a.a.
386 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.jmb.2004.08.028 J Mol Biol 343:785-795 (2004)
PubMed id: 15465062  
 
 
Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17.
W.Adachi, Y.Sakihama, S.Shimizu, T.Sunami, T.Fukazawa, M.Suzuki, R.Yatsunami, S.Nakamura, A.Takénaka.
 
  ABSTRACT  
 
Crystal structures of chitosanase from Bacillus sp. K17 (ChoK) have been determined at 1.5 A resolution in the active form and at 2.0 A resolution in the inactive form. This enzyme belongs to the family GH-8, out of 93 glycoside hydrolase families, and exhibits the substrate specificity of subclass II chitosanase. The catalytic site is constructed on the scaffold of a double-alpha(6)/alpha(6)-barrel, which is formed by six repeating helix-loop-helix motifs. This structure is quite different from those of the GH-46 chitosanases and of GH-5. Structural comparison with CelA (a cellulase belonging to the same family GH-8) suggests that the proton donor Glu122 is conserved, but the proton acceptor is the inserted Glu309 residue, and that the corresponding Asp278 residue in CelA is inactivated in ChoK. The four acidic residues, Asp179, Glu309, Asp183 and Glu107, can be involved in substrate recognition through interactions with the amino groups of the glucosamine residues bound in the -3, -2, -1 and +1 sites, respectively. The hydrophobic Trp235, Trp166, Phe413 and Tyr318 residues are highly conserved for binding of the hexose rings at the -3, -2, +1 and +2 sites, respectively. These structural features indicate that enzymes in GH-8 can be further divided into three subfamilies. Different types of chitosanases are discussed in terms of convergent evolution from different structural ancestors.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Stereo-pair diagrams of the active form of ChoK. In (a) the top view and (b) the side view, the two catalytic residues Glu122 and Glu309 are depicted with a ball-and-stick model (blue for the active form and red for the inactive form). (c) The pH-sensitive Glu122 adopts two conformations.
Figure 6.
Figure 6. A proposed reaction mechanism for ChoK.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 343, 785-795) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20225927 A.Pollet, J.A.Delcour, and C.M.Courtin (2010).
Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families.
  Crit Rev Biotechnol, 30, 176-191.  
20559485 B.B.Aam, E.B.Heggset, A.L.Norberg, M.Sørlie, K.M.Vårum, and V.G.Eijsink (2010).
Production of chitooligosaccharides and their potential applications in medicine.
  Mar Drugs, 8, 1482-1517.  
20552664 T.V.Vuong, and D.B.Wilson (2010).
Glycoside hydrolases: catalytic base/nucleophile diversity.
  Biotechnol Bioeng, 107, 195-205.  
19517107 D.Isogawa, T.Fukuda, K.Kuroda, H.Kusaoke, H.Kimoto, S.Suye, and M.Ueda (2009).
Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library.
  Appl Microbiol Biotechnol, 85, 95.  
19458918 Y.M.Park, and S.Y.Ghim (2009).
Enhancement of the activity and pH-performance of chitosanase from Bacillus cereus strains by DNA shuffling.
  Biotechnol Lett, 31, 1463-1467.  
18685218 A.Ando, A.Saito, S.Arai, S.Usuda, M.Furuno, N.Kaneko, O.Shida, and Y.Nagata (2008).
Molecular characterization of a novel family-46 chitosanase from Pseudomonas sp. A-01.
  Biosci Biotechnol Biochem, 72, 2074-2081.  
18031332 H.S.Lee, J.S.Jang, S.K.Choi, D.W.Lee, E.J.Kim, H.C.Jung, and J.G.Pan (2007).
Identification and expression of GH-8 family chitosanases from several Bacillus thuringiensis subspecies.
  FEMS Microbiol Lett, 277, 133-141.  
16330537 C.Y.Cheng, C.H.Chang, Y.J.Wu, and Y.K.Li (2006).
Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus.
  J Biol Chem, 281, 3137-3144.  
17031054 J.Ogura, A.Toyoda, T.Kurosawa, A.L.Chong, S.Chohnan, and T.Masaki (2006).
Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374.
  Biosci Biotechnol Biochem, 70, 2420-2428.  
16804941 Y.Yasutake, S.Kawano, K.Tajima, M.Yao, Y.Satoh, M.Munekata, and I.Tanaka (2006).
Structural characterization of the Acetobacter xylinum endo-beta-1,4-glucanase CMCax required for cellulose biosynthesis.
  Proteins, 64, 1069-1077.
PDB code: 1wzz
16151097 C.Yun, D.Amakata, Y.Matsuo, H.Matsuda, and M.Kawamukai (2005).
New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida.
  Appl Environ Microbiol, 71, 5138-5144.  
16384794 M.Shimosaka, K.Sato, N.Nishiwaki, T.Miyazawa, and M.Okazaki (2005).
Analysis of essential carboxylic amino acid residues for catalytic activity of fungal chitosanases by site-directed mutagenesis.
  J Biosci Bioeng, 100, 545-550.  
15718242 S.Fushinobu, M.Hidaka, Y.Honda, T.Wakagi, H.Shoun, and M.Kitaoka (2005).
Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125.
  J Biol Chem, 280, 17180-17186.
PDB codes: 1wu4 1wu5 1wu6
  16511009 S.Kawano, Y.Yasutake, K.Tajima, Y.Satoh, M.Yao, I.Tanaka, and M.Munekata (2005).
Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax from Acetobacter xylinum.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 252-254.  
  16511021 Y.Honda, S.Fushinobu, M.Hidaka, T.Wakagi, H.Shoun, and M.Kitaoka (2005).
Crystallization and preliminary X-ray analysis of reducing-end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 291-292.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer