spacer
spacer

PDBsum entry 1swc

Go to PDB code: 
protein Protein-protein interface(s) links
Biotin-binding protein PDB id
1swc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
114 a.a. *
117 a.a. *
Waters ×226
* Residue conservation analysis
PDB id:
1swc
Name: Biotin-binding protein
Title: Apo-core-streptavidin at ph 4.5
Structure: Streptavidin. Chain: a, b, c, d. Fragment: core, residues 13 - 139. Synonym: core streptavidin. Engineered: yes. Other_details: ph 4.5
Source: Streptomyces avidinii. Organism_taxid: 1895. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Homo-Tetramer (from PDB file)
Resolution:
1.80Å     R-factor:   0.163     R-free:   0.232
Authors: S.Freitag,I.Le Trong,L.Klumb,P.S.Stayton,R.E.Stenkamp
Key ref:
S.Freitag et al. (1997). Structural studies of the streptavidin binding loop. Protein Sci, 6, 1157-1166. PubMed id: 9194176 DOI: 10.1002/pro.5560060604
Date:
04-Mar-97     Release date:   04-Mar-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P22629  (SAV_STRAV) -  Streptavidin from Streptomyces avidinii
Seq:
Struc:
183 a.a.
114 a.a.
Protein chains
Pfam   ArchSchema ?
P22629  (SAV_STRAV) -  Streptavidin from Streptomyces avidinii
Seq:
Struc:
183 a.a.
117 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1002/pro.5560060604 Protein Sci 6:1157-1166 (1997)
PubMed id: 9194176  
 
 
Structural studies of the streptavidin binding loop.
S.Freitag, I.Le Trong, L.Klumb, P.S.Stayton, R.E.Stenkamp.
 
  ABSTRACT  
 
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. he four observed crystal forms of ligand-free (top) and biotin- bound (bottom) streptavidin are depicted schematically to illustrate the behavior f [he loop (residues 45 S2) relative lo the biotin binding site. The circles represent the streptavidin tetramer subunits with the binding sites (missing ectors). I and 2 . and 3 and 4. respec- tively, build the dimer pairs. Subunit 1 and 4. and 2 and 3, respectively, donate rp 120 to each others binding site. The curved lines over the binding sites trace the loop with dotted lines representing disordered conformations. Triangles in the binding sites symbolize biotin.
Figure 3.
Fig. 3. Ca representation of asuperposition of thebindinglooprgion in subunit 2 of structure4II(ligand free) on subunit 2 structure (biotin bound). Thi plotillustratestherelativeopen(red,unbound)and closed black,biotin-bound)conformations of te inding loops.
 
  The above figures are reprinted from an Open Access publication published by the Protein Society: Protein Sci (1997, 6, 1157-1166) copyright 1997.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241253 C.E.Chivers, A.L.Koner, E.D.Lowe, and M.Howarth (2011).
How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer.
  Biochem J, 435, 55-63.
PDB codes: 2y3e 2y3f
21327232 I.H.Cho, J.W.Park, T.G.Lee, H.Lee, and S.H.Paek (2011).
Biophysical characterization of the molecular orientation of an antibody-immobilized layer using secondary ion mass spectrometry.
  Analyst, 136, 1412-1419.  
21241152 I.J.General, and H.Meirovitch (2011).
Relative stability of the open and closed conformations of the active site loop of streptavidin.
  J Chem Phys, 134, 025104.  
20383133 C.E.Chivers, E.Crozat, C.Chu, V.T.Moy, D.J.Sherratt, and M.Howarth (2010).
A streptavidin variant with slower biotin dissociation and increased mechanostability.
  Nat Methods, 7, 391-393.  
19565577 A.Fürstenberg, O.Kel, J.Gradinaru, T.R.Ward, D.Emery, G.Bollot, J.Mareda, and E.Vauthey (2009).
Site-dependent excited-state dynamics of a fluorescent probe bound to avidin and streptavidin.
  Chemphyschem, 10, 1517-1532.  
19374419 D.S.Cerutti, I.Le Trong, R.E.Stenkamp, and T.P.Lybrand (2009).
Dynamics of the streptavidin-biotin complex in solution and in its crystal lattice: distinct behavior revealed by molecular simulations.
  J Phys Chem B, 113, 6971-6985.  
18751701 R.Bouquié, A.Bonnin, K.Bernardeau, A.Khammari, B.Dréno, F.Jotereau, N.Labarrière, and F.Lang (2009).
A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes.
  Cancer Immunol Immunother, 58, 553-566.  
19418077 R.Krishnan, E.B.Walton, and K.J.Van Vliet (2009).
Characterizing rare-event property distributions via replicate molecular dynamics simulations of proteins.
  J Mol Model, 15, 1383-1389.  
18950193 D.S.Cerutti, I.Le Trong, R.E.Stenkamp, and T.P.Lybrand (2008).
Simulations of a protein crystal: explicit treatment of crystallization conditions links theory and experiment in the streptavidin-biotin complex.
  Biochemistry, 47, 12065-12077.  
18804035 M.Levy, and A.D.Ellington (2008).
Directed evolution of streptavidin variants using in vitro compartmentalization.
  Chem Biol, 15, 979-989.  
  19262102 R.Krishnan, B.Oommen, E.B.Walton, J.M.Maloney, and K.J.Van Vliet (2008).
Modeling and simulation of chemomechanics at the cell-matrix interface.
  Cell Adh Migr, 2, 83-94.  
18683161 S.Y.Tseng, C.C.Wang, C.W.Lin, C.L.Chen, W.Y.Yu, C.H.Chen, C.Y.Wu, and C.H.Wong (2008).
Glycan arrays on aluminum-coated glass slides.
  Chem Asian J, 3, 1395-1405.  
18972026 X.Jiang, A.Zuber, J.Heberle, and K.Ataka (2008).
In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy.
  Phys Chem Chem Phys, 10, 6381-6387.  
17204428 I.Sinelnikov, E.N.Kitova, and J.S.Klassen (2007).
Influence of Coulombic repulsion on the dissociation pathways and energetics of multiprotein complexes in the gas phase.
  J Am Soc Mass Spectrom, 18, 617-631.  
17417839 J.DeChancie, and K.N.Houk (2007).
The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site.
  J Am Chem Soc, 129, 5419-5429.  
16949754 M.Kobayashi, K.Sumitomo, and K.Torimitsu (2007).
Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
  Ultramicroscopy, 107, 184-190.  
17187819 V.Ramachandiran, V.Grigoriev, L.Lan, E.Ravkov, S.A.Mertens, and J.D.Altman (2007).
A robust method for production of MHC tetramers with small molecule fluorophores.
  J Immunol Methods, 319, 13-20.  
16452627 D.E.Hyre, I.Le Trong, E.A.Merritt, J.F.Eccleston, N.M.Green, R.E.Stenkamp, and P.S.Stayton (2006).
Cooperative hydrogen bond interactions in the streptavidin-biotin system.
  Protein Sci, 15, 459-467.
PDB codes: 1mep 1mk5
16999548 J.Zhou, L.Zhang, Y.Leng, H.K.Tsao, Y.J.Sheng, and S.Jiang (2006).
Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study.
  J Chem Phys, 125, 104905.  
16886084 P.Hidalgo-Fernández, E.Ayet, I.Canal, and J.A.Farrera (2006).
Avidin and streptavidin ligands based on the glycoluril bicyclic system.
  Org Biomol Chem, 4, 3147-3154.  
16751894 S.Otto (2006).
Reinforced molecular recognition as an alternative to rigid receptors.
  Dalton Trans, (), 2861-2864.  
16461889 V.V.Demidov, N.V.Dokholyan, C.Witte-Hoffmann, P.Chalasani, H.W.Yiu, F.Ding, Y.Yu, C.R.Cantor, and N.E.Broude (2006).
Fast complementation of split fluorescent protein triggered by DNA hybridization.
  Proc Natl Acad Sci U S A, 103, 2052-2056.  
16905612 Z.Wu, K.S.Jakes, B.S.Samelson-Jones, B.Lai, G.Zhao, E.London, and A.Finkelstein (2006).
Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia.
  Biophys J, 91, 3249-3256.  
15666425 C.Yu, M.Malesevic, G.Jahreis, M.Schutkowski, G.Fischer, and C.Schiene-Fischer (2005).
The architecture of protein-ligand binding sites revealed through template-assisted intramolecular peptide-peptide interactions.
  Angew Chem Int Ed Engl, 44, 1408-1412.  
16169976 F.Pincet, and J.Husson (2005).
The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds.
  Biophys J, 89, 4374-4381.  
15626629 M.Panhorst, P.B.Kamp, G.Reiss, and H.Brückl (2005).
Sensitive bondforce measurements of ligand-receptor pairs with magnetic beads.
  Biosens Bioelectron, 20, 1685-1689.  
15858262 Y.Eisenberg-Domovich, V.P.Hytönen, M.Wilchek, E.A.Bayer, M.S.Kulomaa, and O.Livnah (2005).
High-resolution crystal structure of an avidin-related protein: insight into high-affinity biotin binding and protein stability.
  Acta Crystallogr D Biol Crystallogr, 61, 528-538.
PDB codes: 1y52 1y53 1y55
14683637 M.Gabig-Ciminska, A.Holmgren, H.Andresen, K.Bundvig Barken, M.Wümpelmann, J.Albers, R.Hintsche, A.Breitenstein, P.Neubauer, M.Los, A.Czyz, G.Wegrzyn, G.Silfversparre, B.Jürgen, T.Schweder, and S.O.Enfors (2004).
Electric chips for rapid detection and quantification of nucleic acids.
  Biosens Bioelectron, 19, 537-546.  
15702371 S.L.Slatin, D.Duché, P.K.Kienker, and D.Baty (2004).
Gating movements of colicin A and colicin Ia are different.
  J Membr Biol, 202, 73-83.  
12925786 I.Le Trong, S.Freitag, L.A.Klumb, V.Chu, P.S.Stayton, and R.E.Stenkamp (2003).
Structural studies of hydrogen bonds in the high-affinity streptavidin-biotin complex: mutations of amino acids interacting with the ureido oxygen of biotin.
  Acta Crystallogr D Biol Crystallogr, 59, 1567-1573.
PDB codes: 1n43 1n4j 1n7y 1n9m 1n9y 1nbx 1nc9 1ndj
12777798 I.Le Trong, T.C.McDevitt, K.E.Nelson, P.S.Stayton, and R.E.Stenkamp (2003).
Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin.
  Acta Crystallogr D Biol Crystallogr, 59, 828-834.
PDB codes: 1mm9 1moy
  12860927 P.K.Kienker, K.S.Jakes, R.O.Blaustein, C.Miller, and A.Finkelstein (2003).
Sizing the protein translocation pathway of colicin Ia channels.
  J Gen Physiol, 122, 161-176.  
12837778 Y.Pazy, Y.Eisenberg-Domovich, O.H.Laitinen, M.S.Kulomaa, E.A.Bayer, M.Wilchek, and O.Livnah (2003).
Dimer-tetramer transition between solution and crystalline states of streptavidin and avidin mutants.
  J Bacteriol, 185, 4050-4056.
PDB codes: 1nqm 1nqn
12134141 D.E.Hyre, L.M.Amon, J.E.Penzotti, I.Le Trong, R.E.Stenkamp, T.P.Lybrand, and P.S.Stayton (2002).
Early mechanistic events in biotin dissociation from streptavidin.
  Nat Struct Biol, 9, 582-585.  
11910031 I.P.Korndörfer, and A.Skerra (2002).
Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site.
  Protein Sci, 11, 883-893.
PDB codes: 1kff 1kl3 1kl4 1kl5
11847279 K.Kwon, E.D.Streaker, and D.Beckett (2002).
Binding specificity and the ligand dissociation process in the E. coli biotin holoenzyme synthetase.
  Protein Sci, 11, 558-570.  
12465031 S.K.Avrantinis, R.L.Stafford, X.Tian, and G.A.Weiss (2002).
Dissecting the streptavidin-biotin interaction by phage-displayed shotgun scanning.
  Chembiochem, 3, 1229-1234.  
11933066 T.Lazaridis, A.Masunov, and F.Gandolfo (2002).
Contributions to the binding free energy of ligands to avidin and streptavidin.
  Proteins, 47, 194-208.  
  10850797 D.E.Hyre, I.Le Trong, S.Freitag, R.E.Stenkamp, and P.S.Stayton (2000).
Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system.
  Protein Sci, 9, 878-885.
PDB code: 1df8
10821667 M.Ihara, S.Takahashi, K.Ishimori, and I.Morishima (2000).
Functions of fluctuation in the heme-binding loops of cytochrome b5 revealed in the process of heme incorporation.
  Biochemistry, 39, 5961-5970.  
10666575 E.A.Merritt (1999).
Comparing anisotropic displacement parameters in protein structures.
  Acta Crystallogr D Biol Crystallogr, 55, 1997-2004.  
10631793 E.Evans (1999).
Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy.
  Biophys Chem, 82, 83-97.  
10393271 E.Goormaghtigh, V.Raussens, and J.M.Ruysschaert (1999).
Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes.
  Biochim Biophys Acta, 1422, 105-185.  
10796990 P.S.Stayton, K.E.Nelson, T.C.McDevitt, V.Bulmus, T.Shimoboji, Z.Ding, and A.S.Hoffman (1999).
Smart and biofunctional streptavidin.
  Biomol Eng, 16, 93-99.  
10796983 P.S.Stayton, S.Freitag, L.A.Klumb, A.Chilkoti, V.Chu, J.E.Penzotti, R.To, D.Hyre, I.Le Trong, T.P.Lybrand, and R.E.Stenkamp (1999).
Streptavidin-biotin binding energetics.
  Biomol Eng, 16, 39-44.  
10329773 S.Freitag, I.Le Trong, L.A.Klumb, P.S.Stayton, and R.E.Stenkamp (1999).
Atomic resolution structure of biotin-free Tyr43Phe streptavidin: what is in the binding site?
  Acta Crystallogr D Biol Crystallogr, 55, 1118-1126.
PDB code: 1swu
10411884 S.Freitag, V.Chu, J.E.Penzotti, L.A.Klumb, R.To, D.Hyre, I.Le Trong, T.P.Lybrand, R.E.Stenkamp, and P.S.Stayton (1999).
A structural snapshot of an intermediate on the streptavidin-biotin dissociation pathway.
  Proc Natl Acad Sci U S A, 96, 8384-8389.
PDB codes: 1sws 1swt
9601024 L.A.Klumb, V.Chu, and P.S.Stayton (1998).
Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex.
  Biochemistry, 37, 7657-7663.  
  9568892 V.Chu, S.Freitag, I.Le Trong, R.E.Stenkamp, and P.S.Stayton (1998).
Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system.
  Protein Sci, 7, 848-859.
PDB codes: 1swf 1swg
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer