spacer
spacer

PDBsum entry 1s60

Go to PDB code: 
protein ligands links
Transferase PDB id
1s60

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
152 a.a. *
Ligands
SO4
COA
* Residue conservation analysis
PDB id:
1s60
Name: Transferase
Title: Aminoglycoside n-acetyltransferase aac(6')-iy in complex with coa and n-terminal his(6)-tag (crystal form 2)
Structure: Aminoglycoside 6'-n-acetyltransferase. Chain: a. Synonym: aminoglycoside n-acetyltransferase aac(6')-iy. Engineered: yes
Source: Salmonella enteritidis. Organism_taxid: 592. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
3.00Å     R-factor:   0.225     R-free:   0.267
Authors: M.W.Vetting,S.Magnet,E.Nieves,S.L.Roderick,J.S.Blanchard
Key ref:
M.W.Vetting et al. (2004). A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol, 11, 565-573. PubMed id: 15123251 DOI: 10.1016/j.chembiol.2004.03.017
Date:
22-Jan-04     Release date:   18-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9R381  (AAC6_SALEN) -  Aminoglycoside N(6')-acetyltransferase type 1 from Salmonella enteritidis
Seq:
Struc:
145 a.a.
152 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.3.1.82  - aminoglycoside 6'-N-acetyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: kanamycin B + acetyl-CoA = N(6')-acetylkanamycin B + CoA + H+
kanamycin B
+ acetyl-CoA
=
N(6')-acetylkanamycin B
Bound ligand (Het Group name = COA)
corresponds exactly
+ CoA
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.chembiol.2004.03.017 Chem Biol 11:565-573 (2004)
PubMed id: 15123251  
 
 
A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.
M.W.Vetting, S.Magnet, E.Nieves, S.L.Roderick, J.S.Blanchard.
 
  ABSTRACT  
 
The Salmonella enterica chromosomally encoded AAC(6')-Iy has been shown to confer broad aminoglycoside resistance in strains in which the structural gene is expressed. The three-dimensional structures reported place the enzyme in the large Gcn5-related N-acetyltransferase (GNAT) superfamily. The structure of the CoA-ribostamycin ternary complex allows us to propose a chemical mechanism for the reaction, and comparison with the Mycobacterium tuberculosis AAC(2')-CoA-ribostamycin complex allows us to define how regioselectivity of acetylation is achieved. The AAC(6')-Iy dimer is most structurally similar to the Saccharomyces cerevisiae Hpa2-encoded histone acetyltransferase. We demonstrate that AAC(6')-Iy catalyzes both acetyl-CoA-dependent self-alpha-N-acetylation and acetylation of eukaryotic histone proteins and the human histone H3 N-terminal peptide. These structural and catalytic similarities lead us to propose that chromosomally encoded bacterial acetyltransferases, including those functionally identified as aminoglycoside acetyltransferases, are the evolutionary progenitors of the eukaryotic histone acetyltransferases.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Schematic of the Genomic Environment and a Typical Acetyltransferase Reaction of AAC(6′)-Iy(A) The genomic environment of the aminoglycoside-sensitive S. enterica BM4361 and aminoglycoside-resistant S. enterica BM4362. A 60 kilobase pair chromosomal deletion results in the constitutive nmpC promoter (black circle) being placed vert, similar 2.2 kilobases upstream of the aac(6′)-Iy-encoded aminoglycoside acetyltransferase (red arrow).(B) Ribostamycin acetylation catalyzed by aminoglycoside 6′-N-acetyltransferase.
Figure 2.
Figure 2. Overall Fold of AAC(6′)-Iy(A) The crystallographically determined structure of the S. enterica AAC(6′)-Iy monomer. The coloring conforms to the amino-terminal residues (β1, α1, α2, green), the central β strands (β2–4, yellow), the central α helix and β strand (α3, β5, red), and the carboxy-terminal region (α4, β6, blue). CoenzymeA and ribostamycin are colored by atom type. This coloring scheme is used throughout.(B) The S. enterica AAC(6′)-Iy dimer showing the position of bound CoA and ribostamycin (stick representation, colored by atom type). The exchange of the β6 and β6′ strands is noted.(C) The interaction between two S. enterica AAC(6′)-Iy dimers showing the N terminally extended peptide, colored by atom type, interacting with an adjacent dimer.(D) Closeup of the interaction between the crystallographically observable N terminally extended peptide and the active site channel. The dimer is presented in surface representation with each monomer colored in silver or bronze.
 
  The above figures are reprinted by permission from Cell Press: Chem Biol (2004, 11, 565-573) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21306440 C.H.Chan, J.Garrity, H.A.Crosby, and J.C.Escalante-Semerena (2011).
In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate.
  Mol Microbiol, 80, 168-183.  
21286630 G.D.Wright (2011).
Molecular mechanisms of antibiotic resistance.
  Chem Commun (Camb), 47, 4055-4061.  
20564281 G.De Pascale, and G.D.Wright (2010).
Antibiotic resistance by enzyme inactivation: from mechanisms to solutions.
  Chembiochem, 11, 1325-1334.  
20397253 J.L.Houghton, K.D.Green, W.Chen, and S.Garneau-Tsodikova (2010).
The future of aminoglycosides: the end or renaissance?
  Chembiochem, 11, 880-902.  
20822442 M.Morar, and G.D.Wright (2010).
The genomic enzymology of antibiotic resistance.
  Annu Rev Genet, 44, 25-51.  
20833577 M.S.Ramirez, and M.E.Tolmasky (2010).
Aminoglycoside modifying enzymes.
  Drug Resist Updat, 13, 151-171.  
20562290 S.Kind, W.K.Jeong, H.Schröder, O.Zelder, and C.Wittmann (2010).
Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum.
  Appl Environ Microbiol, 76, 5175-5180.  
19189962 D.Baniulis, E.Yamashita, J.P.Whitelegge, A.I.Zatsman, M.P.Hendrich, S.S.Hasan, C.M.Ryan, and W.A.Cramer (2009).
Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120.
  J Biol Chem, 284, 9861-9869.
PDB code: 2zt9
19448740 M.Demendi, and C.Creuzenet (2009).
Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni.
  Biochem Cell Biol, 87, 469-483.  
19473964 M.M.Brent, A.Iwata, J.Carten, K.Zhao, and R.Marmorstein (2009).
Structure and Biochemical Characterization of Protein Acetyltransferase from Sulfolobus solfataricus.
  J Biol Chem, 284, 19412-19419.
PDB code: 3f8k
18292754 F.Maurice, I.Broutin, I.Podglajen, P.Benas, E.Collatz, and F.Dardel (2008).
Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance.
  EMBO Rep, 9, 344-349.
PDB codes: 2pr8 2prb 2qir
  18692770 M.A.Hamon, and P.Cossart (2008).
Histone modifications and chromatin remodeling during bacterial infections.
  Cell Host Microbe, 4, 100-109.  
18095712 M.L.Magalhães, M.W.Vetting, F.Gao, L.Freiburger, K.Auclair, and J.S.Blanchard (2008).
Kinetic and structural analysis of bisubstrate inhibition of the Salmonella enterica aminoglycoside 6'-N-acetyltransferase.
  Biochemistry, 47, 579-584.
PDB code: 2vbq
18464231 T.Lombès, G.Bégis, F.Maurice, S.Turcaud, T.Lecourt, F.Dardel, and L.Micouin (2008).
NMR-guided fragment-based approach for the design of AAC(6')-Ib ligands.
  Chembiochem, 9, 1368-1371.  
  17671368 D.Iino, Y.Takakura, M.Kuroiwa, R.Kawakami, Y.Sasaki, T.Hoshino, K.Ohsawa, A.Nakamura, and S.Yajima (2007).
Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 685-688.  
17277795 G.D.Wright (2007).
The antibiotic resistome: the nexus of chemical and genetic diversity.
  Nat Rev Microbiol, 5, 175-186.  
17339319 S.R.Brinsmade, and J.C.Escalante-Semerena (2007).
In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain.
  J Biol Chem, 282, 12629-12640.  
17516632 S.S.Hegde, J.Chandler, M.W.Vetting, M.Yu, and J.S.Blanchard (2007).
Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase.
  Biochemistry, 46, 7187-7195.
PDB code: 2jev
17652520 W.Wei, J.H.McCusker, R.W.Hyman, T.Jones, Y.Ning, Z.Cao, Z.Gu, D.Bruno, M.Miranda, M.Nguyen, J.Wilhelmy, C.Komp, R.Tamse, X.Wang, P.Jia, P.Luedi, P.J.Oefner, L.David, F.S.Dietrich, Y.Li, R.W.Davis, and L.M.Steinmetz (2007).
Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.
  Proc Natl Acad Sci U S A, 104, 12825-12830.  
17242373 X.Dong, M.Kato-Murayama, T.Muramatsu, H.Mori, M.Shirouzu, Y.Bessho, and S.Yokoyama (2007).
The crystal structure of leucyl/phenylalanyl-tRNA-protein transferase from Escherichia coli.
  Protein Sci, 16, 528-534.
PDB code: 2cxa
16369542 A.Robicsek, J.Strahilevitz, G.A.Jacoby, M.Macielag, D.Abbanat, C.H.Park, K.Bush, and D.C.Hooper (2006).
Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase.
  Nat Med, 12, 83-88.  
16596569 B.W.Han, C.A.Bingman, G.E.Wesenberg, and G.N.Phillips (2006).
Crystal structure of Homo sapiens thialysine Nepsilon-acetyltransferase (HsSSAT2) in complex with acetyl coenzyme A.
  Proteins, 64, 288-293.
PDB code: 2bei
16635801 J.J.Barker (2006).
Antibacterial drug discovery and structure-based design.
  Drug Discov Today, 11, 391-404.  
16885238 J.M.Yang, and C.H.Tung (2006).
Protein structure database search and evolutionary classification.
  Nucleic Acids Res, 34, 3646-3659.  
16855251 M.N.Hung, E.Rangarajan, C.Munger, G.Nadeau, T.Sulea, and A.Matte (2006).
Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis.
  J Bacteriol, 188, 5606-5617.
PDB codes: 2fs5 2ft0
16388575 M.W.Vetting, S.S.Hegde, J.E.Fajardo, A.Fiser, S.L.Roderick, H.E.Takiff, and J.S.Blanchard (2006).
Pentapeptide repeat proteins.
  Biochemistry, 45, 1.  
16206301 F.Gao, X.Yan, O.M.Baettig, A.M.Berghuis, and K.Auclair (2005).
Regio- and chemoselective 6'-N-derivatization of aminoglycosides: bisubstrate inhibitors as probes to study aminoglycoside 6'-N-acetyltransferases.
  Angew Chem Int Ed Engl, 44, 6859-6862.  
15695811 G.L.Card, N.A.Peterson, C.A.Smith, B.Rupp, B.M.Schick, and E.N.Baker (2005).
The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis.
  J Biol Chem, 280, 13978-13986.
PDB code: 1yk3
15817456 M.W.Vetting, L.P.de Carvalho, S.L.Roderick, and J.S.Blanchard (2005).
A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium.
  J Biol Chem, 280, 22108-22114.
PDB codes: 1s7f 1s7k 1s7l 1s7n
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer