spacer
spacer

PDBsum entry 1s2e

Go to PDB code: 
protein ligands links
Viral protein PDB id
1s2e

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
288 a.a. *
Ligands
EPE ×2
Waters ×292
* Residue conservation analysis
PDB id:
1s2e
Name: Viral protein
Title: Bacteriophage t4 gene product 9 (gp9), the trigger of tail contraction and the long tail fibers connector, alternative fit of the first 19 residues
Structure: Baseplate structural protein gp9. Chain: a, b. Synonym: baseplate wedge protein 9. Engineered: yes
Source: Enterobacteria phage t4. Organism_taxid: 10665. Gene: 9. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.30Å     R-factor:   0.239     R-free:   0.277
Authors: V.A.Kostyuchenko,G.A.Navruzbekov,L.P.Kurochkina,S.V.Strelkov, V.V.Mesyanzhinov,M.G.Rossmann
Key ref:
V.A.Kostyuchenko et al. (1999). The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure, 7, 1213-1222. PubMed id: 10545330 DOI: 10.1016/S0969-2126(00)80055-6
Date:
08-Jan-04     Release date:   13-Jan-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P10927  (BP09_BPT4) -  Baseplate protein gp9 from Enterobacteria phage T4
Seq:
Struc:
288 a.a.
288 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0969-2126(00)80055-6 Structure 7:1213-1222 (1999)
PubMed id: 10545330  
 
 
The structure of bacteriophage T4 gene product 9: the trigger for tail contraction.
V.A.Kostyuchenko, G.A.Navruzbekov, L.P.Kurochkina, S.V.Strelkov, V.V.Mesyanzhinov, M.G.Rossmann.
 
  ABSTRACT  
 
BACKGROUND: The T4 bacteriophage consists of a head, filled with double-stranded DNA, and a complex contractile tail required for the ejection of the viral genome into the Escherichia coli host. The tail has a baseplate to whïch are attached six long and six short tail fibers. These fibers are the sensing devices for recognizing the host. When activated by attachment to cell receptors, the fibers cause a conformational transition in the baseplate and subsequently in the tail sheath, which initiates DNA ejection. The baseplate is a multisubunit complex of proteins encoded by 15 genes. Gene product 9 (gp9) is the protein that connects the long tail fibers to the baseplate and triggers the tail contraction after virus attachment to a host cell. RESULTS: The crystal structure of recombinant gp9, determined to 2.3 A resolution, shows that the protein of 288 amino acid residues assembles as a homotrimer. The monomer consists of three domains: the N-terminal domain generates a triple coiled coil; the middle domain is a mixed, seven-stranded beta sandwich with a topology not previously observed; and the C-terminal domain is an eight-stranded, antiparallel beta sandwich having some resemblance to 'jelly-roll' viral capsid protein structures. CONCLUSIONS: The biologically active form of gp9 is a trimer. The protein contains flexible interdomain hinges, which are presumably required to facilitate signal transmission between the long tail fibers and the baseplate. Structural and genetic analyses show that the C-terminal domain is bound to the baseplate, and the N-terminal coiled-coil domain is associated with the long tail fibers.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Topology diagrams for (a) the middle domain and (b) the C-terminal domain. (c) Topology of a jelly-roll fold, as occurs in many viral capsid proteins. (d) The b-annulus connecting the middle and C-terminal domains. The amino acids and hydrogen bonding between subunits A, B and C are shown.
 
  The above figure is reprinted by permission from Cell Press: Structure (1999, 7, 1213-1222) copyright 1999.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21460456 E.Krissinel (2011).
Macromolecular complexes in crystals and solutions.
  Acta Crystallogr D Biol Crystallogr, 67, 376-385.  
21047256 C.S.Hayes, S.K.Aoki, and D.A.Low (2010).
Bacterial contact-dependent delivery systems.
  Annu Rev Genet, 44, 71-90.  
20593364 M.L.Yap, K.Mio, S.Ali, A.Minton, S.Kanamaru, and F.Arisaka (2010).
Sequential assembly of the wedge of the baseplate of phage T4 in the presence and absence of gp11 as monitored by analytical ultracentrifugation.
  Macromol Biosci, 10, 808-813.  
  21129200 P.G.Leiman, F.Arisaka, M.J.van Raaij, V.A.Kostyuchenko, A.A.Aksyuk, S.Kanamaru, and M.G.Rossmann (2010).
Morphogenesis of the T4 tail and tail fibers.
  Virol J, 7, 355.  
18976216 L.P.Kurochkina, A.Y.Vishnevskiy, and V.V.Mesyanzhinov (2008).
Role of the C-terminus in folding and oligomerization of bacteriophage T4 gene product 9.
  Biochemistry (Mosc), 73, 995-999.  
17395453 J.E.Johnson, and W.Chiu (2007).
DNA packaging and delivery machines in tailed bacteriophages.
  Curr Opin Struct Biol, 17, 237-243.  
17295322 L.Lin, H.Nakano, S.Nakamura, S.Uchiyama, S.Fujimoto, S.Matsunaga, Y.Kobayashi, T.Ohkubo, and K.Fukui (2007).
Crystal structure of Pyrococcus horikoshii PPC protein at 1.60 A resolution.
  Proteins, 67, 505-507.
PDB code: 2dt4
17164521 M.G.Rossmann, F.Arisaka, A.J.Battisti, V.D.Bowman, P.R.Chipman, A.Fokine, S.Hafenstein, S.Kanamaru, V.A.Kostyuchenko, V.V.Mesyanzhinov, M.M.Shneider, M.C.Morais, P.G.Leiman, L.M.Palermo, C.R.Parrish, and C.Xiao (2007).
From structure of the complex to understanding of the biology.
  Acta Crystallogr D Biol Crystallogr, 63, 9.  
15828858 M.B.Sullivan, M.L.Coleman, P.Weigele, F.Rohwer, and S.W.Chisholm (2005).
Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations.
  PLoS Biol, 3, e144.  
15866036 S.E.Cotter, N.K.Surana, and J.W.St Geme (2005).
Trimeric autotransporters: a distinct subfamily of autotransporter proteins.
  Trends Microbiol, 13, 199-205.  
16116440 V.A.Kostyuchenko, P.R.Chipman, P.G.Leiman, F.Arisaka, V.V.Mesyanzhinov, and M.G.Rossmann (2005).
The tail structure of bacteriophage T4 and its mechanism of contraction.
  Nat Struct Mol Biol, 12, 810-813.
PDB codes: 1zku 2bsg
15093831 M.G.Rossmann, V.V.Mesyanzhinov, F.Arisaka, and P.G.Leiman (2004).
The bacteriophage T4 DNA injection machine.
  Curr Opin Struct Biol, 14, 171-180.  
15315755 P.G.Leiman, P.R.Chipman, V.A.Kostyuchenko, V.V.Mesyanzhinov, and M.G.Rossmann (2004).
Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host.
  Cell, 118, 419-429.
PDB code: 1tja
15627372 V.V.Mesyanzhinov, P.G.Leiman, V.A.Kostyuchenko, L.P.Kurochkina, K.A.Miroshnikov, N.N.Sykilinda, and M.M.Shneider (2004).
Molecular architecture of bacteriophage T4.
  Biochemistry (Mosc), 69, 1190-1202.  
12467643 F.Arisaka, S.Kanamaru, P.Leiman, and M.G.Rossmann (2003).
The tail lysozyme complex of bacteriophage T4.
  Int J Biochem Cell Biol, 35, 16-21.  
12923574 V.A.Kostyuchenko, P.G.Leiman, P.R.Chipman, S.Kanamaru, M.J.van Raaij, F.Arisaka, V.V.Mesyanzhinov, and M.G.Rossmann (2003).
Three-dimensional structure of bacteriophage T4 baseplate.
  Nat Struct Biol, 10, 688-693.
PDB codes: 1pdf 1pdi 1pdj 1pdl 1pdm 1pdp 1pds
11530935 M.J.van Raaij, G.Schoehn, M.Jaquinod, K.Ashman, M.R.Burda, and S.Miller (2001).
Identification and crystallisation of a heat- and protease-stable fragment of the bacteriophage T4 short tail fibre.
  Biol Chem, 382, 1049-1055.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer