|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Translation,protein turnover
|
 |
|
Title:
|
 |
Tsg101(uev) domain in complex with ubiquitin
|
|
Structure:
|
 |
Tumor susceptibility gene 101 protein. Chain: a, c. Fragment: tsg101(uev) domain. Synonym: tsg101(uev). Tumor susceptibility protein. Engineered: yes. Ubiquitin. Chain: b, d. Synonym: ubiquitin and ribosomal protein s27a precursor. Ubiquitin carboxyl extension protein 80. 40s ribosomal protein s27a. Ubiquitin-
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Dimer (from
)
|
|
Resolution:
|
 |
|
2.00Å
|
R-factor:
|
0.203
|
R-free:
|
0.240
|
|
|
Authors:
|
 |
W.I.Sundquist,H.L.Schubert,B.N.Kelly,G.C.Hill,J.M.Holton,C.P.Hill
|
Key ref:
|
 |
W.I.Sundquist
et al.
(2004).
Ubiquitin recognition by the human TSG101 protein.
Mol Cell,
13,
783-789.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
07-Jan-04
|
Release date:
|
04-May-04
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q99816
(TS101_HUMAN) -
Tumor susceptibility gene 101 protein from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
390 a.a.
141 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
13:783-789
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Ubiquitin recognition by the human TSG101 protein.
|
|
W.I.Sundquist,
H.L.Schubert,
B.N.Kelly,
G.C.Hill,
J.M.Holton,
C.P.Hill.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The UEV domain of the TSG101 protein functions in both HIV-1 budding and the
vacuolar protein sorting (VPS) pathway, where it binds ubiquitylated proteins as
they are sorted into vesicles that bud into late endosomal compartments called
multivesicular bodies (MVBs). TSG101 UEV-ubiquitin interactions are therefore
important for delivery of both substrates and hydrolytic enzymes to lysosomes,
which receive proteins via fusion with MVBs. Here, we report the crystal
structure of the TSG101 UEV domain in complex with ubiquitin at 2.0 A
resolution. TSG101 UEV contacts the Ile44 surface and an adjacent loop of
ubiquitin through a highly solvated interface. Mutations that disrupt the
interface inhibit MVB sorting, and the structure also explains how the TSG101
UEV can independently bind its ubiquitin and Pro-Thr/Ser-Ala-Pro peptide
ligands. Remarkably, comparison with mapping data from other UEV and related E2
proteins indicates that although the different E2/UEV domains share the same
structure and have conserved ubiquitin binding activity, they bind through very
different interfaces.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. UEV Can Bind Ub and PTAP Peptides
IndependentlySame as Figure 1 but with the PTAP peptide shown as
seen in a TSG101 UEV-peptide complex (Pornillos et al., 2002a).
|
 |
Figure 4.
Figure 4. Interactions of E2/UEV Domains with UbThe TSG101
UEV-Ub crystal structure is shown viewed from the top in Figure
1. The donor and acceptor Ub molecules are shown in white after
overlap of the E2/UEV domains of E2 (donor) (Hamilton et al.
2001 and VanDemark et al. 2001) and Mms2 UEV (acceptor)
(VanDemark et al., 2001) on the TSG101 UEV domain structure.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2004,
13,
783-789)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Herrador,
S.Herranz,
D.Lara,
and
O.Vincent
(2010).
Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein.
|
| |
Mol Cell Biol,
30,
897-907.
|
 |
|
|
|
|
 |
A.Pincetic,
Z.Kuang,
E.J.Seo,
and
J.Leis
(2010).
The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process.
|
| |
J Virol,
84,
4725-4736.
|
 |
|
|
|
|
 |
A.R.Cole,
L.P.Lewis,
and
H.Walden
(2010).
The structure of the catalytic subunit FANCL of the Fanconi anemia core complex.
|
| |
Nat Struct Mol Biol,
17,
294-298.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.M.Wenzel,
K.E.Stoll,
and
R.E.Klevit
(2010).
E2s: structurally economical and functionally replete.
|
| |
Biochem J,
433,
31-42.
|
 |
|
|
|
|
 |
J.A.Jadwin,
V.Rudd,
P.Sette,
S.Challa,
and
F.Bouamr
(2010).
Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch.
|
| |
J Virol,
84,
704-715.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
P.I.Hanson
(2010).
Membrane budding and scission by the ESCRT machinery: it's all in the neck.
|
| |
Nat Rev Mol Cell Biol,
11,
556-566.
|
 |
|
|
|
|
 |
J.H.Hurley
(2010).
The ESCRT complexes.
|
| |
Crit Rev Biochem Mol Biol,
45,
463-487.
|
 |
|
|
|
|
 |
M.Zhadina,
and
P.D.Bieniasz
(2010).
Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding.
|
| |
PLoS Pathog,
6,
e1001153.
|
 |
|
|
|
|
 |
S.Vardhana,
K.Choudhuri,
R.Varma,
and
M.L.Dustin
(2010).
Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster.
|
| |
Immunity,
32,
531-540.
|
 |
|
|
|
|
 |
Y.J.Im,
L.Kuo,
X.Ren,
P.V.Burgos,
X.Z.Zhao,
F.Liu,
T.R.Burke,
J.S.Bonifacino,
E.O.Freed,
and
J.H.Hurley
(2010).
Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction.
|
| |
Structure,
18,
1536-1547.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Calistri,
C.Salata,
C.Parolin,
and
G.Palù
(2009).
Role of multivesicular bodies and their components in the egress of enveloped RNA viruses.
|
| |
Rev Med Virol,
19,
31-45.
|
 |
|
|
|
|
 |
A.Ramanathan,
and
P.K.Agarwal
(2009).
Computational identification of slow conformational fluctuations in proteins.
|
| |
J Phys Chem B,
113,
16669-16680.
|
 |
|
|
|
|
 |
B.J.Killian,
J.Y.Kravitz,
S.Somani,
P.Dasgupta,
Y.P.Pang,
and
M.K.Gilson
(2009).
Configurational entropy in protein-peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide.
|
| |
J Mol Biol,
389,
315-335.
|
 |
|
|
|
|
 |
I.Dikic,
S.Wakatsuki,
and
K.J.Walters
(2009).
Ubiquitin-binding domains - from structures to functions.
|
| |
Nat Rev Mol Cell Biol,
10,
659-671.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
X.Ren
(2009).
The circuitry of cargo flux in the ESCRT pathway.
|
| |
J Cell Biol,
185,
185-187.
|
 |
|
|
|
|
 |
J.Kapitán,
D.Gallo,
N.Goasdoué,
M.Nicaise,
M.Desmadril,
L.Hecht,
G.Leclercq,
L.D.Barron,
and
Y.Jacquot
(2009).
Identification of a human estrogen receptor alpha-derived antiestrogenic peptide that adopts a polyproline II conformation.
|
| |
J Pept Sci,
15,
455-464.
|
 |
|
|
|
|
 |
S.B.Shields,
A.J.Oestreich,
S.Winistorfer,
D.Nguyen,
J.A.Payne,
D.J.Katzmann,
and
R.Piper
(2009).
ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting.
|
| |
J Cell Biol,
185,
213-224.
|
 |
|
|
|
|
 |
Y.Zhou,
Z.W.Carpenter,
G.Brennan,
and
J.R.Nambu
(2009).
The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates.
|
| |
Mol Biol Evol,
26,
2245-2259.
|
 |
|
|
|
|
 |
A.Okumura,
P.M.Pitha,
and
R.N.Harty
(2008).
ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity.
|
| |
Proc Natl Acad Sci U S A,
105,
3974-3979.
|
 |
|
|
|
|
 |
H.Y.Chung,
E.Morita,
U.von Schwedler,
B.Müller,
H.G.Kräusslich,
and
W.I.Sundquist
(2008).
NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains.
|
| |
J Virol,
82,
4884-4897.
|
 |
|
|
|
|
 |
L.Xu,
M.E.Sowa,
J.Chen,
X.Li,
S.P.Gygi,
and
J.W.Harper
(2008).
An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex.
|
| |
Mol Biol Cell,
19,
5059-5071.
|
 |
|
|
|
|
 |
S.K.Kyere,
P.R.Joseph,
and
M.F.Summers
(2008).
The p12 domain is unstructured in a murine leukemia virus p12-CA(N) Gag construct.
|
| |
PLoS ONE,
3,
e1902.
|
 |
|
|
|
|
 |
E.Morita,
V.Sandrin,
S.L.Alam,
D.M.Eckert,
S.P.Gygi,
and
W.I.Sundquist
(2007).
Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding.
|
| |
Cell Host Microbe,
2,
41-53.
|
 |
|
|
|
|
 |
I.F.Pitha-Rowe,
and
P.M.Pitha
(2007).
Viral defense, carcinogenesis and ISG15: novel roles for an old ISG.
|
| |
Cytokine Growth Factor Rev,
18,
409-417.
|
 |
|
|
|
|
 |
J.Martin-Serrano
(2007).
The role of ubiquitin in retroviral egress.
|
| |
Traffic,
8,
1297-1303.
|
 |
|
|
|
|
 |
K.Dreher,
and
J.Callis
(2007).
Ubiquitin, hormones and biotic stress in plants.
|
| |
Ann Bot,
99,
787-822.
|
 |
|
|
|
|
 |
M.Curtiss,
C.Jones,
and
M.Babst
(2007).
Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
|
| |
Mol Biol Cell,
18,
636-645.
|
 |
|
|
|
|
 |
M.S.Kostelansky,
C.Schluter,
Y.Y.Tam,
S.Lee,
R.Ghirlando,
B.Beach,
E.Conibear,
and
J.H.Hurley
(2007).
Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer.
|
| |
Cell,
129,
485-498.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Knipscheer,
W.J.van Dijk,
J.V.Olsen,
M.Mann,
and
T.K.Sixma
(2007).
Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation.
|
| |
EMBO J,
26,
2797-2807.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.C.Piper,
and
D.J.Katzmann
(2007).
Biogenesis and function of multivesicular bodies.
|
| |
Annu Rev Cell Dev Biol,
23,
519-547.
|
 |
|
|
|
|
 |
R.L.Williams,
and
S.Urbé
(2007).
The emerging shape of the ESCRT machinery.
|
| |
Nat Rev Mol Cell Biol,
8,
355-368.
|
 |
|
|
|
|
 |
A.A.Bashirova,
G.Bleiber,
Y.Qi,
H.Hutcheson,
T.Yamashita,
R.C.Johnson,
J.Cheng,
G.Alter,
J.J.Goedert,
S.Buchbinder,
K.Hoots,
D.Vlahov,
M.May,
F.Maldarelli,
L.Jacobson,
S.J.O'brien,
A.Telenti,
and
M.Carrington
(2006).
Consistent effects of TSG101 genetic variability on multiple outcomes of exposure to human immunodeficiency virus type 1.
|
| |
J Virol,
80,
6757-6763.
|
 |
|
|
|
|
 |
A.Okumura,
G.Lu,
I.Pitha-Rowe,
and
P.M.Pitha
(2006).
Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15.
|
| |
Proc Natl Acad Sci U S A,
103,
1440-1445.
|
 |
|
|
|
|
 |
A.Palencia,
J.C.Martinez,
P.L.Mateo,
I.Luque,
and
A.Camara-Artigas
(2006).
Structure of human TSG101 UEV domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
458-464.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Pineda-Molina,
H.Belrhali,
A.J.Piefer,
I.Akula,
P.Bates,
and
W.Weissenhorn
(2006).
The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment.
|
| |
Traffic,
7,
1007-1016.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.E.Reyes-Turcu,
J.R.Horton,
J.E.Mullally,
A.Heroux,
X.Cheng,
and
K.D.Wilkinson
(2006).
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin.
|
| |
Cell,
124,
1197-1208.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Teo,
D.J.Gill,
J.Sun,
O.Perisic,
D.B.Veprintsev,
Y.Vallis,
S.D.Emr,
and
R.L.Williams
(2006).
ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.
|
| |
Cell,
125,
99.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Hurley,
and
S.D.Emr
(2006).
The ESCRT complexes: structure and mechanism of a membrane-trafficking network.
|
| |
Annu Rev Biophys Biomol Struct,
35,
277-298.
|
 |
|
|
|
|
 |
J.Vaynberg,
and
J.Qin
(2006).
Weak protein-protein interactions as probed by NMR spectroscopy.
|
| |
Trends Biotechnol,
24,
22-27.
|
 |
|
|
|
|
 |
K.G.Bache,
S.Stuffers,
L.Malerød,
T.Slagsvold,
C.Raiborg,
D.Lechardeur,
S.Wälchli,
G.L.Lukacs,
A.Brech,
and
H.Stenmark
(2006).
The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor.
|
| |
Mol Biol Cell,
17,
2513-2523.
|
 |
|
|
|
|
 |
L.Penengo,
M.Mapelli,
A.G.Murachelli,
S.Confalonieri,
L.Magri,
A.Musacchio,
P.P.Di Fiore,
S.Polo,
and
T.R.Schneider
(2006).
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.
|
| |
Cell,
124,
1183-1195.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Lewis,
L.F.Saltibus,
D.D.Hau,
W.Xiao,
and
L.Spyracopoulos
(2006).
Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human MMS2.
|
| |
J Biomol NMR,
34,
89.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.R.Russell,
D.P.Nickerson,
and
G.Odorizzi
(2006).
Molecular mechanisms of late endosome morphology, identity and sorting.
|
| |
Curr Opin Cell Biol,
18,
422-428.
|
 |
|
|
|
|
 |
M.S.Kostelansky,
J.Sun,
S.Lee,
J.Kim,
R.Ghirlando,
A.Hierro,
S.D.Emr,
and
J.H.Hurley
(2006).
Structural and functional organization of the ESCRT-I trafficking complex.
|
| |
Cell,
125,
113-126.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Bellare,
A.K.Kutach,
A.K.Rines,
C.Guthrie,
and
E.J.Sontheimer
(2006).
Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p.
|
| |
RNA,
12,
292-302.
|
 |
|
|
|
|
 |
P.S.Brzovic,
A.Lissounov,
D.E.Christensen,
D.W.Hoyt,
and
R.E.Klevit
(2006).
A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination.
|
| |
Mol Cell,
21,
873-880.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Hirano,
M.Kawasaki,
H.Ura,
R.Kato,
C.Raiborg,
H.Stenmark,
and
S.Wakatsuki
(2006).
Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting.
|
| |
Nat Struct Mol Biol,
13,
272-277.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Hirano,
N.Suzuki,
T.Slagsvold,
M.Kawasaki,
D.Trambaiolo,
R.Kato,
H.Stenmark,
and
S.Wakatsuki
(2006).
Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain.
|
| |
Nat Struct Mol Biol,
13,
1031-1032.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.L.Alam,
C.Langelier,
F.G.Whitby,
S.Koirala,
H.Robinson,
C.P.Hill,
and
W.I.Sundquist
(2006).
Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain.
|
| |
Nat Struct Mol Biol,
13,
1029-1030.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.L.Alam,
and
W.I.Sundquist
(2006).
Two new structures of Ub-receptor complexes. U2.
|
| |
Nat Struct Mol Biol,
13,
186-188.
|
 |
|
|
|
|
 |
T.Slagsvold,
K.Pattni,
L.Malerød,
and
H.Stenmark
(2006).
Endosomal and non-endosomal functions of ESCRT proteins.
|
| |
Trends Cell Biol,
16,
317-326.
|
 |
|
|
|
|
 |
Y.G.Chang,
A.X.Song,
Y.G.Gao,
Y.H.Shi,
X.J.Lin,
X.T.Cao,
D.H.Lin,
and
H.Y.Hu
(2006).
Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin.
|
| |
Protein Sci,
15,
1248-1259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Ohno,
J.Jee,
K.Fujiwara,
T.Tenno,
N.Goda,
H.Tochio,
H.Kobayashi,
H.Hiroaki,
and
M.Shirakawa
(2005).
Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition.
|
| |
Structure,
13,
521-532.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Tsui,
A.Raguraj,
and
C.M.Pickart
(2005).
Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway.
|
| |
J Biol Chem,
280,
19829-19835.
|
 |
|
|
|
|
 |
D.T.Huang,
A.Paydar,
M.Zhuang,
M.B.Waddell,
J.M.Holton,
and
B.A.Schulman
(2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
|
| |
Mol Cell,
17,
341-350.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Prag,
S.Lee,
R.Mattera,
C.N.Arighi,
B.M.Beach,
J.S.Bonifacino,
and
J.H.Hurley
(2005).
Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.
|
| |
Proc Natl Acad Sci U S A,
102,
2334-2339.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Kim,
S.Sitaraman,
A.Hierro,
B.M.Beach,
G.Odorizzi,
and
J.H.Hurley
(2005).
Structural basis for endosomal targeting by the Bro1 domain.
|
| |
Dev Cell,
8,
937-947.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Song,
Z.Zhang,
W.Hu,
and
Y.Chen
(2005).
Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation.
|
| |
J Biol Chem,
280,
40122-40129.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Hicke,
H.L.Schubert,
and
C.P.Hill
(2005).
Ubiquitin-binding domains.
|
| |
Nat Rev Mol Cell Biol,
6,
610-621.
|
 |
|
|
|
|
 |
M.C.Johnson,
J.L.Spidel,
D.Ako-Adjei,
J.W.Wills,
and
V.M.Vogt
(2005).
The C-terminal half of TSG101 blocks Rous sarcoma virus budding and sequesters Gag into unique nonendosomal structures.
|
| |
J Virol,
79,
3775-3786.
|
 |
|
|
|
|
 |
M.E.Call,
and
K.W.Wucherpfennig
(2005).
The T cell receptor: critical role of the membrane environment in receptor assembly and function.
|
| |
Annu Rev Immunol,
23,
101-125.
|
 |
|
|
|
|
 |
M.Kawasaki,
T.Shiba,
Y.Shiba,
Y.Yamaguchi,
N.Matsugaki,
N.Igarashi,
M.Suzuki,
R.Kato,
K.Kato,
K.Nakayama,
and
S.Wakatsuki
(2005).
Molecular mechanism of ubiquitin recognition by GGA3 GAT domain.
|
| |
Genes Cells,
10,
639-654.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Ismaili,
R.Blind,
and
M.J.Garabedian
(2005).
Stabilization of the unliganded glucocorticoid receptor by TSG101.
|
| |
J Biol Chem,
280,
11120-11126.
|
 |
|
|
|
|
 |
S.Chupreta,
S.Holmstrom,
L.Subramanian,
and
J.A.Iñiguez-Lluhí
(2005).
A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties.
|
| |
Mol Cell Biol,
25,
4272-4282.
|
 |
|
|
|
|
 |
S.Gazdoiu,
K.Yamoah,
K.Wu,
C.R.Escalante,
I.Tappin,
V.Bermudez,
A.K.Aggarwal,
J.Hurwitz,
and
Z.Q.Pan
(2005).
Proximity-induced activation of human Cdc34 through heterologous dimerization.
|
| |
Proc Natl Acad Sci U S A,
102,
15053-15058.
|
 |
|
|
|
|
 |
Y.Hirano,
S.Yoshinaga,
R.Takeya,
N.N.Suzuki,
M.Horiuchi,
M.Kohjima,
H.Sumimoto,
and
F.Inagaki
(2005).
Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains.
|
| |
J Biol Chem,
280,
9653-9661.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Hierro,
J.Sun,
A.S.Rusnak,
J.Kim,
G.Prag,
S.D.Emr,
and
J.H.Hurley
(2004).
Structure of the ESCRT-II endosomal trafficking complex.
|
| |
Nature,
431,
221-225.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.M.Pickart,
and
D.Fushman
(2004).
Polyubiquitin chains: polymeric protein signals.
|
| |
Curr Opin Chem Biol,
8,
610-616.
|
 |
|
|
|
|
 |
E.Morita,
and
W.I.Sundquist
(2004).
Retrovirus budding.
|
| |
Annu Rev Cell Dev Biol,
20,
395-425.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |
|