spacer
spacer

PDBsum entry 1rrs

Go to PDB code: 
protein dna_rna ligands metals links
Hydrolase/DNA PDB id
1rrs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
345 a.a. *
DNA/RNA
Ligands
SF4
Metals
_CA
Waters ×95
* Residue conservation analysis
PDB id:
1rrs
Name: Hydrolase/DNA
Title: Muty adenine glycosylase in complex with DNA containing an abasic site
Structure: 5'-d( Ap Ap Gp Ap Cp (8Og)p Tp Gp Gp Ap C)-3'. Chain: b. Engineered: yes. 5'-d( Tp Gp Tp Cp Cp Ap (Hpd)p Gp Tp Cp T)-3'. Chain: c. Engineered: yes. Muty. Chain: a. Engineered: yes.
Source: Synthetic: yes. Geobacillus stearothermophilus. Organism_taxid: 1422. Gene: muty. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
Resolution:
2.40Å     R-factor:   0.231     R-free:   0.275
Authors: J.C.Fromme,A.Banerjee,S.J.Huang,G.L.Verdine
Key ref:
J.C.Fromme et al. (2004). Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature, 427, 652-656. PubMed id: 14961129 DOI: 10.1038/nature02306
Date:
08-Dec-03     Release date:   17-Feb-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P83847  (MUTY_GEOSE) -  Adenine DNA glycosylase from Geobacillus stearothermophilus
Seq:
Struc:
366 a.a.
345 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

DNA/RNA chains
  A-A-G-A-C-8OG-T-G-G-A-C 11 bases
  G-T-C-C-A-HPD-G-T-C-T 10 bases

 Enzyme reactions 
   Enzyme class: E.C.3.2.2.31  - adenine glycosylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nature02306 Nature 427:652-656 (2004)
PubMed id: 14961129  
 
 
Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.
J.C.Fromme, A.Banerjee, S.J.Huang, G.L.Verdine.
 
  ABSTRACT  
 
The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: MutY -DNA complex. a, Ribbon trace of the complex. DNA is shown in gold, oxoG in magenta, the substrate adenine in purple, the [4Fe -4S] domain in green, and the six-helix barrel domain in cyan. The C-terminal domain is coloured by secondary structure ( -strands, blue; helices, red). The sulphur and iron atoms of the [4Fe -4S] cluster are yellow and orange, respectively. See Supplementary Fig. S4 for a topology diagram. b, Same structure as in a, but rotated 90° towards the reader. The purple sphere indicates a Ca^2+ ion that is occluded in a. c, Structures of MutT13 and the EndoIII -DNA complex9. N and C termini are indicated.
Figure 3.
Figure 3: Enzyme -DNA interface and oxoG recognition. a, GRASP24 molecular surface representation of the enzyme, with the bound DNA shown as a framework model. Residues Gln 48, Tyr 88 and Ser 308 are indicated and the DNA is coloured as in Fig. 1. b, Ball-and-stick representation of the view shown in a. OxoG is shown in red, the substrate adenine in purple, and the remainder of the DNA in gold. The protein backbone is presented as a grey ribbon trace, with side chains shown explicitly in cyan. c, Close-up view of oxoG recognition by MutY (coloured as in a). Broken lines indicate inferred hydrogen bonds.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2004, 427, 652-656) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20861000 M.Firczuk, M.Wojciechowski, H.Czapinska, and M.Bochtler (2011).
DNA intercalation without flipping in the specific ThaI-DNA complex.
  Nucleic Acids Res, 39, 744-754.
PDB code: 3ndh
20725929 A.A.Out, C.M.Tops, M.Nielsen, M.M.Weiss, I.J.van Minderhout, I.F.Fokkema, M.P.Buisine, K.Claes, C.Colas, R.Fodde, F.Fostira, P.F.Franken, M.Gaustadnes, K.Heinimann, S.V.Hodgson, F.B.Hogervorst, E.Holinski-Feder, K.Lagerstedt-Robinson, S.Olschwang, A.M.van den Ouweland, E.J.Redeker, R.J.Scott, B.Vankeirsbilck, R.V.Grønlund, J.T.Wijnen, F.P.Wikman, S.Aretz, J.R.Sampson, P.Devilee, J.T.den Dunnen, and F.J.Hes (2010).
Leiden Open Variation Database of the MUTYH gene.
  Hum Mutat, 31, 1205-1215.  
20047321 J.C.Genereux, A.K.Boal, and J.K.Barton (2010).
DNA-mediated charge transport in redox sensing and signaling.
  J Am Chem Soc, 132, 891-905.  
19864691 T.Nakamura, S.Meshitsuka, S.Kitagawa, N.Abe, J.Yamada, T.Ishino, H.Nakano, T.Tsuzuki, T.Doi, Y.Kobayashi, S.Fujii, M.Sekiguchi, and Y.Yamagata (2010).
Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base.
  J Biol Chem, 285, 444-452.
PDB codes: 3a6s 3a6t 3a6u 3a6v
19720997 A.K.Boal, J.C.Genereux, P.A.Sontz, J.A.Gralnick, D.K.Newman, and J.K.Barton (2009).
Redox signaling between DNA repair proteins for efficient lesion detection.
  Proc Natl Acad Sci U S A, 106, 15237-15242.  
19446526 F.Faucher, S.Duclos, V.Bandaru, S.S.Wallace, and S.Doublié (2009).
Crystal structures of two archaeal 8-oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction.
  Structure, 17, 703-712.
PDB codes: 3fhf 3fhg
19361427 F.Faucher, S.M.Robey-Bond, S.S.Wallace, and S.Doublié (2009).
Structural characterization of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase in its apo form and in complex with 8-oxodeoxyguanosine.
  J Mol Biol, 387, 669-679.
PDB codes: 3f0z 3f10
19443904 M.Forsbring, E.S.Vik, B.Dalhus, T.H.Karlsen, A.Bergquist, E.Schrumpf, M.Bjørås, K.M.Boberg, and I.Alseth (2009).
Catalytically impaired hMYH and NEIL1 mutant proteins identified in patients with primary sclerosing cholangitis and cholangiocarcinoma.
  Carcinogenesis, 30, 1147-1154.  
19523222 P.W.Chang, A.Madabushi, and A.L.Lu (2009).
Insights into the role of Val45 and Gln182 of Escherichia coli MutY in DNA substrate binding and specificity.
  BMC Biochem, 10, 19.  
19130099 R.A.Bachorz, G.Lupica, M.Gutowski, and M.Haranczyk (2009).
Electrostatic potential maps of damaged DNA studied by image analysis tools. 8-Oxoguanine and abasic site lesions.
  J Mol Model, 15, 817-827.  
19836313 S.Kundu, M.K.Brinkmeyer, A.L.Livingston, and S.S.David (2009).
Adenine removal activity and bacterial complementation with the human MutY homologue (MUTYH) and Y165C, G382D, P391L and Q324R variants associated with colorectal cancer.
  DNA Repair (Amst), 8, 1400-1410.  
19841264 S.Lee, and G.L.Verdine (2009).
Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
  Proc Natl Acad Sci U S A, 106, 18497-18502.
PDB code: 3g0q
19200715 S.Schneider, S.Schorr, and T.Carell (2009).
Crystal structure analysis of DNA lesion repair and tolerance mechanisms.
  Curr Opin Struct Biol, 19, 87-95.  
18980370 A.A.Gorodetsky, M.C.Buzzeo, and J.K.Barton (2008).
DNA-mediated electrochemistry.
  Bioconjug Chem, 19, 2285-2296.  
18026095 A.L.Livingston, V.L.O'Shea, T.Kim, E.T.Kool, and S.S.David (2008).
Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY.
  Nat Chem Biol, 4, 51-58.  
18682218 B.R.Bowman, S.Lee, S.Wang, and G.L.Verdine (2008).
Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA.
  Structure, 16, 1166-1174.
PDB codes: 3cvs 3cvt 3cw7 3cwa 3cws 3cwt 3cwu
18432238 C.G.Yang, C.Yi, E.M.Duguid, C.T.Sullivan, X.Jian, P.A.Rice, and C.He (2008).
Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA.
  Nature, 452, 961-965.
PDB codes: 3bi3 3bie 3bkz 3btx 3bty 3btz 3bu0 3buc
18072751 J.C.Delaney, and J.M.Essigmann (2008).
Biological properties of single chemical-DNA adducts: a twenty year perspective.
  Chem Res Toxicol, 21, 232-252.  
18599627 J.C.Lin, R.R.Singh, and D.L.Cox (2008).
Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S] complex of MutY.
  Biophys J, 95, 3259-3268.  
18534194 M.Ali, H.Kim, S.Cleary, C.Cupples, S.Gallinger, and R.Bristow (2008).
Characterization of mutant MUTYH proteins associated with familial colorectal cancer.
  Gastroenterology, 135, 499-507.  
19506731 M.L.Poulsen, and M.L.Bisgaard (2008).
MUTYH Associated Polyposis (MAP).
  Curr Genomics, 9, 420-435.  
18578568 S.C.Wolski, J.Kuper, P.Hänzelmann, J.J.Truglio, D.L.Croteau, B.Van Houten, and C.Kisker (2008).
Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.
  PLoS Biol, 6, e149.
PDB code: 2vsf
18507380 S.Lee, C.T.Radom, and G.L.Verdine (2008).
Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1.
  J Am Chem Soc, 130, 7784-7785.  
17410210 A.H.Metz, T.Hollis, and B.F.Eichman (2007).
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
  EMBO J, 26, 2411-2420.
PDB codes: 2ofi 2ofk
17599416 A.K.Boal, E.Yavin, and J.K.Barton (2007).
DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport?
  J Inorg Biochem, 101, 1913-1921.  
17114185 C.T.Radom, A.Banerjee, and G.L.Verdine (2007).
Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations.
  J Biol Chem, 282, 9182-9194.
PDB codes: 2nob 2noe 2nof 2noh 2noi 2nol 2noz
17617640 G.Tamulaitis, M.Zaremba, R.H.Szczepanowski, M.Bochtler, and V.Siksnys (2007).
Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence.
  Nucleic Acids Res, 35, 4792-4799.  
17114250 H.Bai, and A.L.Lu (2007).
Physical and functional interactions between Escherichia coli MutY glycosylase and mismatch repair protein MutS.
  J Bacteriol, 189, 902-910.  
17081686 H.Bai, S.Grist, J.Gardner, G.Suthers, T.M.Wilson, and A.L.Lu (2007).
Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis.
  Cancer Lett, 250, 74-81.  
17637338 J.E.Corn, and J.M.Berger (2007).
FASTDXL: a generalized screen to trap disulfide-stabilized complexes for use in structural studies.
  Structure, 15, 773-780.  
17581577 S.S.David, V.L.O'Shea, and S.Kundu (2007).
Base-excision repair of oxidative DNA damage.
  Nature, 447, 941-950.  
17313689 Y.Wang, and T.Schlick (2007).
Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides.
  BMC Struct Biol, 7, 7.  
16505354 E.Yavin, E.D.Stemp, V.L.O'shea, S.S.David, and J.K.Barton (2006).
Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling.
  Proc Natl Acad Sci U S A, 103, 3610-3614.  
16524590 J.R.Horton, K.Liebert, M.Bekes, A.Jeltsch, and X.Cheng (2006).
Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase.
  J Mol Biol, 358, 559-570.
PDB code: 2g1p
17002303 K.Y.Kropachev, D.O.Zharkov, and A.P.Grollman (2006).
Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger.
  Biochemistry, 45, 12039-12049.  
16469697 M.Gehring, J.H.Huh, T.F.Hsieh, J.Penterman, Y.Choi, J.J.Harada, R.B.Goldberg, and R.L.Fischer (2006).
DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation.
  Cell, 124, 495-506.  
15800616 A.Banerjee, W.Yang, M.Karplus, and G.L.Verdine (2005).
Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
  Nature, 434, 612-618.
PDB codes: 1yqk 1yql 1yqm 1yqr
16155580 C.M.Bradley, D.R.Ronning, R.Ghirlando, R.Craigie, and F.Dyda (2005).
Structural basis for DNA bridging by barrier-to-autointegration factor.
  Nat Struct Mol Biol, 12, 935-936.
PDB code: 2bzf
15738421 E.Yavin, A.K.Boal, E.D.Stemp, E.M.Boon, A.L.Livingston, V.L.O'Shea, S.S.David, and J.K.Barton (2005).
Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical.
  Proc Natl Acad Sci U S A, 102, 3546-3551.  
15642264 G.M.Lingaraju, A.A.Sartori, D.Kostrewa, A.E.Prota, J.Jiricny, and F.K.Winkler (2005).
A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
  Structure, 13, 87-98.
PDB codes: 1xqo 1xqp 1xqu
15673720 H.Bai, S.Jones, X.Guan, T.M.Wilson, J.R.Sampson, J.P.Cheadle, and A.L.Lu (2005).
Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis.
  Nucleic Acids Res, 33, 597-604.  
16061814 J.Shen, D.Gai, A.Patrick, W.B.Greenleaf, and X.S.Chen (2005).
The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase.
  Proc Natl Acad Sci U S A, 102, 11248-11253.  
  15819980 K.A.Eriksen (2005).
Location of DNA damage by charge exchanging repair enzymes: effects of cooperativity on location time.
  Theor Biol Med Model, 2, 15.  
15811798 O.A.Lukianova, and S.S.David (2005).
A role for iron-sulfur clusters in DNA repair.
  Curr Opin Chem Biol, 9, 145-151.  
15805527 T.Davidsen, M.Bjørås, E.C.Seeberg, and T.Tønjum (2005).
Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species.
  J Bacteriol, 187, 2801-2809.  
15988139 T.Doi, S.Yonekura, K.Tano, S.Yasuhira, S.Yonei, and Q.M.Zhang (2005).
The Shizosaccharomyces pombe homolog (SpMYH) of the Escherichia coli MutY is required for removal of guanine from 8-oxoguanine/guanine mispairs to prevent G:C to C:G transversions.
  J Radiat Res (Tokyo), 46, 205-214.  
16096281 T.Watanabe, J.O.Blaisdell, S.S.Wallace, and J.P.Bond (2005).
Engineering functional changes in Escherichia coli endonuclease III based on phylogenetic and structural analyses.
  J Biol Chem, 280, 34378-34384.  
15681617 Y.Ushijima, Y.Tominaga, T.Miura, D.Tsuchimoto, K.Sakumi, and Y.Nakabeppu (2005).
A functional analysis of the DNA glycosylase activity of mouse MUTYH protein excising 2-hydroxyadenine opposite guanine in DNA.
  Nucleic Acids Res, 33, 672-682.  
15547286 A.T.Ulijasz, D.R.Andes, J.D.Glasner, and B.Weisblum (2004).
Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator.
  J Bacteriol, 186, 8123-8136.  
15456766 C.Y.Lee, H.Bai, R.Houle, G.M.Wilson, and A.L.Lu (2004).
An Escherichia coli MutY mutant without the six-helix barrel domain is a dimer in solution and assembles cooperatively into multisubunit complexes with DNA.
  J Biol Chem, 279, 52653-52663.  
15568983 D.E.Barnes, and T.Lindahl (2004).
Repair and genetic consequences of endogenous DNA base damage in mammalian cells.
  Annu Rev Genet, 38, 445-476.  
15310837 H.Ma, H.M.Lee, and E.W.Englander (2004).
N-terminus of the rat adenine glycosylase MYH affects excision rates and processing of MYH-generated abasic sites.
  Nucleic Acids Res, 32, 4332-4339.  
15102448 J.C.Fromme, A.Banerjee, and G.L.Verdine (2004).
DNA glycosylase recognition and catalysis.
  Curr Opin Struct Biol, 14, 43-49.  
15247335 J.W.Pham, I.Radhakrishnan, and E.J.Sontheimer (2004).
Thermodynamic and structural characterization of 2'-nitrogen-modified RNA duplexes.
  Nucleic Acids Res, 32, 3446-3455.  
15326180 R.C.Manuel, K.Hitomi, A.S.Arvai, P.G.House, A.J.Kurtz, M.L.Dodson, A.K.McCullough, J.A.Tainer, and R.S.Lloyd (2004).
Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase.
  J Biol Chem, 279, 46930-46939.
PDB codes: 1wef 1weg 1wei
15333942 T.Nakamura, T.Doi, M.Sekiguchi, and Y.Yamagata (2004).
Crystallization and preliminary X-ray analysis of Escherichia coli MutT in binary and ternary complex forms.
  Acta Crystallogr D Biol Crystallogr, 60, 1641-1643.  
15128940 Y.Choi, J.J.Harada, R.B.Goldberg, and R.L.Fischer (2004).
An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene.
  Proc Natl Acad Sci U S A, 101, 7481-7486.  
15199168 Y.Tominaga, Y.Ushijima, D.Tsuchimoto, M.Mishima, M.Shirakawa, S.Hirano, K.Sakumi, and Y.Nakabeppu (2004).
MUTYH prevents OGG1 or APEX1 from inappropriately processing its substrate or reaction product with its C-terminal domain.
  Nucleic Acids Res, 32, 3198-3211.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer