|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
Crystal structure of the 1918 human h1 hemagglutinin precursor (ha0)
|
|
Structure:
|
 |
Hemagglutinin. Chain: a, c, e. Fragment: receptor binding domain, ha1 (residues 11-329). Engineered: yes. Hemagglutinin. Chain: b, d, f. Fragment: membrane fusion domain, ha2 (residues 1-175). Engineered: yes
|
|
Source:
|
 |
Influenza a virus. Organism_taxid: 11320. Gene: hemagglutinin. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9.
|
|
Biol. unit:
|
 |
Hexamer (from
)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.271
|
R-free:
|
0.295
|
|
|
Authors:
|
 |
J.Stevens,A.L.Corper,C.F.Basler,J.K.Taubenberger,P.Palese,I.A.Wilson
|
Key ref:
|
 |
J.Stevens
et al.
(2004).
Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus.
Science,
303,
1866-1870.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Nov-03
|
Release date:
|
23-Mar-04
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
303:1866-1870
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus.
|
|
J.Stevens,
A.L.Corper,
C.F.Basler,
J.K.Taubenberger,
P.Palese,
I.A.Wilson.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The 1918 "Spanish" influenza pandemic represents the largest recorded
outbreak of any infectious disease. The crystal structure of the uncleaved
precursor of the major surface antigen of the extinct 1918 virus was determined
at 3.0 angstrom resolution after reassembly of the hemagglutinin gene from viral
RNA fragments preserved in 1918 formalin-fixed lung tissues. A narrow avian-like
receptor-binding site, two previously unobserved histidine patches, and a less
exposed surface loop at the cleavage site that activates viral membrane fusion
reveal structural features primarily found in avian viruses, which may have
contributed to the extraordinarily high infectivity and mortality rates observed
during 1918.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Structural comparison of the 18HA0 cleavage site with
other HAs. HA2 domains for human H3 HA0 (PDB ID code: 1ha0 [PDB]
) and cleaved avian H5 HA1/HA2 (PDB ID code: 1jsm [PDB]
) (50) were aligned with 18HA0. The cleavage sites are colored
(A) green for human H3 HA0, (B) red for 18HA0 and (C) orange for
H5 HA1/HA2. RA329Q, ArgA329 GlnA329. (D)
Overlay of cleavage loops of H3 HA0, H1 HA0, and avian H5
HA1/HA2. The two views differ by a rotation of 90° about the
threefold vertical axis. (E) Surface views showing the trimer
interface and the position of the cleavage loop. (F) Removal of
the cleavage loop reveals the electronegative cavity that it
masks. Arg329 is colored blue and N-acetyl-glucosamines,
indicating the nearby glycosylation sites, are colored gold. (A)
to (D) were generated as in Fig. 1, and (E) and (F) were
generated with MSMS (46) through the program VMD (47).
|
 |
Figure 3.
Fig. 3. Structural comparisons of the environment around HA2
Trp21 in 18HA0 and H5 HA1/HA2. The avian H5 structure (PDB ID
code: 1jsm [PDB]
) was aligned with the 18HA0 model for comparison, as in Fig. 2.
In the avian structure (A), HisA18 and HisA38 are 3.7
Å apart, whereas in 18HA0 (B), the same residues are 13.5
Å apart. The TrpB21 "flip" in 18HA0 is stabilized by close
proximity to the side chains of TrpB14 and Ala^B36. This figure
was generated in the same way as Fig. 1A.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2004,
303,
1866-1870)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.M.Tscherne,
and
A.García-Sastre
(2011).
Virulence determinants of pandemic influenza viruses.
|
| |
J Clin Invest,
121,
6.
|
 |
|
|
|
|
 |
G.Neumann,
and
Y.Kawaoka
(2011).
The first influenza pandemic of the new millennium.
|
| |
Influenza Other Respi Viruses,
5,
157-166.
|
 |
|
|
|
|
 |
L.Qi,
J.C.Kash,
V.G.Dugan,
B.W.Jagger,
Y.F.Lau,
Z.M.Sheng,
E.C.Crouch,
K.L.Hartshorn,
and
J.K.Taubenberger
(2011).
The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding.
|
| |
Virology,
412,
426-434.
|
 |
|
|
|
|
 |
N.Goñi,
G.Moratorio,
V.Ramas,
L.Coppola,
H.Chiparelli,
and
J.Cristina
(2011).
Phylogenetic analysis of pandemic 2009 influenza A virus circulating in the South American region: genetic relationships and vaccine strain match.
|
| |
Arch Virol,
156,
87-94.
|
 |
|
|
|
|
 |
T.Han,
and
W.A.Marasco
(2011).
Structural basis of influenza virus neutralization.
|
| |
Ann N Y Acad Sci,
1217,
178-190.
|
 |
|
|
|
|
 |
H.Ge,
Y.F.Wang,
J.Xu,
Q.Gu,
H.B.Liu,
P.G.Xiao,
J.Zhou,
Y.Liu,
Z.Yang,
and
H.Su
(2010).
Anti-influenza agents from Traditional Chinese Medicine.
|
| |
Nat Prod Rep,
27,
1758-1780.
|
 |
|
|
|
|
 |
H.Yang,
L.M.Chen,
P.J.Carney,
R.O.Donis,
and
J.Stevens
(2010).
Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site.
|
| |
PLoS Pathog,
6,
e1001081.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Yang,
P.Carney,
and
J.Stevens
(2010).
Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin.
|
| |
PLoS Curr,
2,
RRN1152.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Aguilar-Yáñez,
R.Portillo-Lara,
G.I.Mendoza-Ochoa,
S.A.García-Echauri,
F.López-Pacheco,
D.Bulnes-Abundis,
J.Salgado-Gallegos,
I.M.Lara-Mayorga,
Y.Webb-Vargas,
F.O.León-Angel,
R.E.Rivero-Aranda,
Y.Oropeza-Almazán,
G.M.Ruiz-Palacios,
M.I.Zertuche-Guerra,
R.M.DuBois,
S.W.White,
S.Schultz-Cherry,
C.J.Russell,
and
M.M.Alvarez
(2010).
An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli.
|
| |
PLoS One,
5,
e11694.
|
 |
|
|
|
|
 |
J.Steel,
A.C.Lowen,
T.Wang,
M.Yondola,
Q.Gao,
K.Haye,
A.García-Sastre,
and
P.Palese
(2010).
Influenza virus vaccine based on the conserved hemagglutinin stalk domain.
|
| |
MBio,
1,
0.
|
 |
|
|
|
|
 |
J.Ye,
E.M.Sorrell,
Y.Cai,
H.Shao,
K.Xu,
L.Pena,
D.Hickman,
H.Song,
M.Angel,
R.A.Medina,
B.Manicassamy,
A.Garcia-Sastre,
and
D.R.Perez
(2010).
Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype?
|
| |
PLoS Pathog,
6,
e1001145.
|
 |
|
|
|
|
 |
K.L.Hartshorn,
M.R.White,
T.Tecle,
G.Sorensen,
U.Holmskov,
and
E.C.Crouch
(2010).
Viral aggregating and opsonizing activity in collectin trimers.
|
| |
Am J Physiol Lung Cell Mol Physiol,
298,
L79-L88.
|
 |
|
|
|
|
 |
K.Viswanathan,
X.Koh,
A.Chandrasekaran,
C.Pappas,
R.Raman,
A.Srinivasan,
Z.Shriver,
T.M.Tumpey,
and
R.Sasisekharan
(2010).
Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.
|
| |
PLoS One,
5,
e13768.
|
 |
|
|
|
|
 |
L.Sahini,
A.Tempczyk-Russell,
and
R.Agarwal
(2010).
Large-scale sequence analysis of hemagglutinin of influenza A virus identifies conserved regions suitable for targeting an anti-viral response.
|
| |
PLoS One,
5,
e9268.
|
 |
|
|
|
|
 |
M.Prabakaran,
S.Madhan,
N.Prabhu,
J.Qiang,
and
J.Kwang
(2010).
Gastrointestinal delivery of baculovirus displaying influenza virus hemagglutinin protects mice against heterologous H5N1 infection.
|
| |
J Virol,
84,
3201-3209.
|
 |
|
|
|
|
 |
M.S.Song,
J.H.Lee,
P.N.Pascua,
Y.H.Baek,
H.I.Kwon,
K.J.Park,
H.W.Choi,
Y.K.Shin,
J.Y.Song,
C.J.Kim,
and
Y.K.Choi
(2010).
Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea.
|
| |
J Clin Microbiol,
48,
3204-3211.
|
 |
|
|
|
|
 |
P.J.Carney,
A.S.Lipatov,
A.S.Monto,
R.O.Donis,
and
J.Stevens
(2010).
Flexible label-free quantitative assay for antibodies to influenza virus hemagglutinins.
|
| |
Clin Vaccine Immunol,
17,
1407-1416.
|
 |
|
|
|
|
 |
R.Xu,
D.C.Ekiert,
J.C.Krause,
R.Hai,
J.E.Crowe,
and
I.A.Wilson
(2010).
Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus.
|
| |
Science,
328,
357-360.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Xu,
R.McBride,
J.C.Paulson,
C.F.Basler,
and
I.A.Wilson
(2010).
Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic.
|
| |
J Virol,
84,
1715-1721.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.A.Potdar,
M.S.Chadha,
S.M.Jadhav,
J.Mullick,
S.S.Cherian,
and
A.C.Mishra
(2010).
Genetic characterization of the influenza A pandemic (H1N1) 2009 virus isolates from India.
|
| |
PLoS One,
5,
e9693.
|
 |
|
|
|
|
 |
Y.Sun,
Y.Shi,
W.Zhang,
Q.Li,
D.Liu,
C.Vavricka,
J.Yan,
and
G.F.Gao
(2010).
In silico characterization of the functional and structural modules of the hemagglutinin protein from the swine-origin influenza virus A (H1N1)-2009.
|
| |
Sci China Life Sci,
53,
633-642.
|
 |
|
|
|
|
 |
A.K.Chakrabarti,
S.D.Pawar,
S.S.Cherian,
S.S.Koratkar,
S.M.Jadhav,
B.Pal,
S.Raut,
V.Thite,
S.S.Kode,
S.S.Keng,
B.J.Payyapilly,
J.Mullick,
and
A.C.Mishra
(2009).
Characterization of the influenza A H5N1 viruses of the 2008-09 outbreaks in India reveals a third introduction and possible endemicity.
|
| |
PLoS One,
4,
e7846.
|
 |
|
|
|
|
 |
D.M.Tscherne,
and
A.García-Sastre
(2009).
Recent strategies to identify broadly neutralizing antibodies against influenza A virus.
|
| |
F1000 Biol Rep,
1,
0.
|
 |
|
|
|
|
 |
G.K.Goh,
A.K.Dunker,
and
V.N.Uversky
(2009).
Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses.
|
| |
Virol J,
6,
69.
|
 |
|
|
|
|
 |
G.Neumann,
T.Noda,
and
Y.Kawaoka
(2009).
Emergence and pandemic potential of swine-origin H1N1 influenza virus.
|
| |
Nature,
459,
931-939.
|
 |
|
|
|
|
 |
J.E.Crowe
(2009).
Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches.
|
| |
Vaccine,
27,
G47-G51.
|
 |
|
|
|
|
 |
J.Sui,
W.C.Hwang,
S.Perez,
G.Wei,
D.Aird,
L.M.Chen,
E.Santelli,
B.Stec,
G.Cadwell,
M.Ali,
H.Wan,
A.Murakami,
A.Yammanuru,
T.Han,
N.J.Cox,
L.A.Bankston,
R.O.Donis,
R.C.Liddington,
and
W.A.Marasco
(2009).
Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses.
|
| |
Nat Struct Mol Biol,
16,
265-273.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Reed,
H.L.Yen,
R.M.DuBois,
O.A.Bridges,
R.Salomon,
R.G.Webster,
and
C.J.Russell
(2009).
Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein.
|
| |
J Virol,
83,
3568-3580.
|
 |
|
|
|
|
 |
N.Macdonald,
D.Parks,
and
R.Beiko
(2009).
SeqMonitor: influenza analysis pipeline and visualization.
|
| |
PLoS Curr,
1,
RRN1040.
|
 |
|
|
|
|
 |
O.Martinez,
T.Tsibane,
and
C.F.Basler
(2009).
Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery.
|
| |
Int Rev Immunol,
28,
69-92.
|
 |
|
|
|
|
 |
P.Das,
J.Li,
A.K.Royyuru,
and
R.Zhou
(2009).
Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
|
| |
J Comput Chem,
30,
1654-1663.
|
 |
|
|
|
|
 |
P.M.Kasson,
D.L.Ensign,
and
V.S.Pande
(2009).
Combining molecular dynamics with bayesian analysis to predict and evaluate ligand-binding mutations in influenza hemagglutinin.
|
| |
J Am Chem Soc,
131,
11338-11340.
|
 |
|
|
|
|
 |
Q.Huang,
T.Korte,
P.S.Rachakonda,
E.W.Knapp,
and
A.Herrmann
(2009).
Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
|
| |
Proteins,
74,
291-303.
|
 |
|
|
|
|
 |
U.Neu,
T.Stehle,
and
W.J.Atwood
(2009).
The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry.
|
| |
Virology,
384,
389-399.
|
 |
|
|
|
|
 |
A.Chandrasekaran,
A.Srinivasan,
R.Raman,
K.Viswanathan,
S.Raguram,
T.M.Tumpey,
V.Sasisekharan,
and
R.Sasisekharan
(2008).
Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin.
|
| |
Nat Biotechnol,
26,
107-113.
|
 |
|
|
|
|
 |
A.Srinivasan,
K.Viswanathan,
R.Raman,
A.Chandrasekaran,
S.Raguram,
T.M.Tumpey,
V.Sasisekharan,
and
R.Sasisekharan
(2008).
Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses.
|
| |
Proc Natl Acad Sci U S A,
105,
2800-2805.
|
 |
|
|
|
|
 |
C.J.Wei,
L.Xu,
W.P.Kong,
W.Shi,
K.Canis,
J.Stevens,
Z.Y.Yang,
A.Dell,
S.M.Haslam,
I.A.Wilson,
and
G.J.Nabel
(2008).
Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus.
|
| |
J Virol,
82,
6200-6208.
|
 |
|
|
|
|
 |
J.M.White,
S.E.Delos,
M.Brecher,
and
K.Schornberg
(2008).
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
|
| |
Crit Rev Biochem Mol Biol,
43,
189-219.
|
 |
|
|
|
|
 |
J.Stevens,
O.Blixt,
L.M.Chen,
R.O.Donis,
J.C.Paulson,
and
I.A.Wilson
(2008).
Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity.
|
| |
J Mol Biol,
381,
1382-1394.
|
 |
|
|
|
|
 |
K.I.Hidari,
T.Murata,
K.Yoshida,
Y.Takahashi,
Y.H.Minamijima,
Y.Miwa,
S.Adachi,
M.Ogata,
T.Usui,
Y.Suzuki,
and
T.Suzuki
(2008).
Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection.
|
| |
Glycobiology,
18,
779-788.
|
 |
|
|
|
|
 |
K.L.Hartshorn,
R.Webby,
M.R.White,
T.Tecle,
C.Pan,
S.Boucher,
R.J.Moreland,
E.C.Crouch,
and
R.K.Scheule
(2008).
Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D.
|
| |
Respir Res,
9,
65.
|
 |
|
|
|
|
 |
M.R.White,
M.Doss,
P.Boland,
T.Tecle,
and
K.L.Hartshorn
(2008).
Innate immunity to influenza virus: implications for future therapy.
|
| |
Expert Rev Clin Immunol,
4,
497-514.
|
 |
|
|
|
|
 |
Q.Wang,
F.Cheng,
M.Lu,
X.Tian,
and
J.Ma
(2008).
Crystal structure of unliganded influenza B virus hemagglutinin.
|
| |
J Virol,
82,
3011-3020.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Fritz,
K.Stiasny,
and
F.X.Heinz
(2008).
Identification of specific histidines as pH sensors in flavivirus membrane fusion.
|
| |
J Cell Biol,
183,
353-361.
|
 |
|
|
|
|
 |
T.Sawada,
T.Hashimoto,
H.Tokiwa,
T.Suzuki,
H.Nakano,
H.Ishida,
M.Kiso,
and
Y.Suzuki
(2008).
Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors.
|
| |
J Mol Genet Med,
3,
133-142.
|
 |
|
|
|
|
 |
X.Xu,
X.Zhu,
R.A.Dwek,
J.Stevens,
and
I.A.Wilson
(2008).
Structural characterization of the 1918 influenza virus H1N1 neuraminidase.
|
| |
J Virol,
82,
10493-10501.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Yu,
T.Tsibane,
P.A.McGraw,
F.S.House,
C.J.Keefer,
M.D.Hicar,
T.M.Tumpey,
C.Pappas,
L.A.Perrone,
O.Martinez,
J.Stevens,
I.A.Wilson,
P.V.Aguilar,
E.L.Altschuler,
C.F.Basler,
and
J.E.Crowe
(2008).
Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors.
|
| |
Nature,
455,
532-536.
|
 |
|
|
|
|
 |
C.C.Wang,
J.C.Lee,
S.Y.Luo,
S.S.Kulkarni,
Y.W.Huang,
C.C.Lee,
K.L.Chang,
and
S.C.Hung
(2007).
Regioselective one-pot protection of carbohydrates.
|
| |
Nature,
446,
896-899.
|
 |
|
|
|
|
 |
G.A.Landolt,
and
C.W.Olsen
(2007).
Up to new tricks - a review of cross-species transmission of influenza A viruses.
|
| |
Anim Health Res Rev,
8,
1.
|
 |
|
|
|
|
 |
J.Cinatl,
M.Michaelis,
and
H.W.Doerr
(2007).
The threat of avian influenza a (H5N1): part II: Clues to pathogenicity and pathology.
|
| |
Med Microbiol Immunol,
196,
191-201.
|
 |
|
|
|
|
 |
J.Cinatl,
M.Michaelis,
and
H.W.Doerr
(2007).
The threat of avian influenza A (H5N1). Part I: Epidemiologic concerns and virulence determinants.
|
| |
Med Microbiol Immunol,
196,
181-190.
|
 |
|
|
|
|
 |
J.R.Teuton,
and
C.R.Brandt
(2007).
Sialic acid on herpes simplex virus type 1 envelope glycoproteins is required for efficient infection of cells.
|
| |
J Virol,
81,
3731-3739.
|
 |
|
|
|
|
 |
M.A.Zhukovsky,
I.Markovic,
and
A.L.Bailey
(2007).
Influence of calcium on lipid mixing mediated by influenza hemagglutinin.
|
| |
Arch Biochem Biophys,
465,
101-108.
|
 |
|
|
|
|
 |
O.Loudig,
E.Milova,
M.Brandwein-Gensler,
A.Massimi,
T.J.Belbin,
G.Childs,
R.H.Singer,
T.Rohan,
and
M.B.Prystowsky
(2007).
Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (CT-RT).
|
| |
Nucleic Acids Res,
35,
e94.
|
 |
|
|
|
|
 |
Q.Wang,
X.Tian,
X.Chen,
and
J.Ma
(2007).
Structural basis for receptor specificity of influenza B virus hemagglutinin.
|
| |
Proc Natl Acad Sci U S A,
104,
16874-16879.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Korte,
K.Ludwig,
Q.Huang,
P.S.Rachakonda,
and
A.Herrmann
(2007).
Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration.
|
| |
Eur Biophys J,
36,
327-335.
|
 |
|
|
|
|
 |
Z.Y.Yang,
C.J.Wei,
W.P.Kong,
L.Wu,
L.Xu,
D.F.Smith,
and
G.J.Nabel
(2007).
Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity.
|
| |
Science,
317,
825-828.
|
 |
|
|
|
|
 |
A.Garcia-Sastre,
and
R.J.Whitley
(2006).
Lessons learned from reconstructing the 1918 influenza pandemic.
|
| |
J Infect Dis,
194,
S127-S132.
|
 |
|
|
|
|
 |
B.Eschli,
K.Quirin,
A.Wepf,
J.Weber,
R.Zinkernagel,
and
H.Hengartner
(2006).
Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins.
|
| |
J Virol,
80,
5897-5907.
|
 |
|
|
|
|
 |
H.S.Yin,
X.Wen,
R.G.Paterson,
R.A.Lamb,
and
T.S.Jardetzky
(2006).
Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation.
|
| |
Nature,
439,
38-44.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Barnes,
and
M.G.Thomas
(2006).
Evaluating bacterial pathogen DNA preservation in museum osteological collections.
|
| |
Proc Biol Sci,
273,
645-653.
|
 |
|
|
|
|
 |
J.K.Taubenberger
(2006).
The origin and virulence of the 1918 "Spanish" influenza virus.
|
| |
Proc Am Philos Soc,
150,
86.
|
 |
|
|
|
|
 |
J.Persson,
B.Beall,
S.Linse,
and
G.Lindahl
(2006).
Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.
|
| |
PLoS Pathog,
2,
e47.
|
 |
|
|
|
|
 |
J.Stevens,
O.Blixt,
J.C.Paulson,
and
I.A.Wilson
(2006).
Glycan microarray technologies: tools to survey host specificity of influenza viruses.
|
| |
Nat Rev Microbiol,
4,
857-864.
|
 |
|
|
|
|
 |
K.Nakajima,
E.Nobusawa,
and
S.Nakajima
(2006).
[Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution]
|
| |
Uirusu,
56,
91-98.
|
 |
|
|
|
|
 |
M.Knossow,
and
J.J.Skehel
(2006).
Variation and infectivity neutralization in influenza.
|
| |
Immunology,
119,
1-7.
|
 |
|
|
|
|
 |
T.Horimoto,
and
Y.Kawaoka
(2006).
Strategies for developing vaccines against H5N1 influenza A viruses.
|
| |
Trends Mol Med,
12,
506-514.
|
 |
|
|
|
|
 |
T.Kampmann,
D.S.Mueller,
A.E.Mark,
P.R.Young,
and
B.Kobe
(2006).
The Role of histidine residues in low-pH-mediated viral membrane fusion.
|
| |
Structure,
14,
1481-1487.
|
 |
|
|
|
|
 |
W.P.Kong,
C.Hood,
Z.Y.Yang,
C.J.Wei,
L.Xu,
A.García-Sastre,
T.M.Tumpey,
and
G.J.Nabel
(2006).
Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination.
|
| |
Proc Natl Acad Sci U S A,
103,
15987-15991.
|
 |
|
|
|
|
 |
B.Chen,
E.M.Vogan,
H.Gong,
J.J.Skehel,
D.C.Wiley,
and
S.C.Harrison
(2005).
Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein.
|
| |
Structure,
13,
197-211.
|
 |
|
|
|
|
 |
C.J.Russell,
and
R.G.Webster
(2005).
The genesis of a pandemic influenza virus.
|
| |
Cell,
123,
368-371.
|
 |
|
|
|
|
 |
C.W.Lee,
D.L.Suarez,
T.M.Tumpey,
H.W.Sung,
Y.K.Kwon,
Y.J.Lee,
J.G.Choi,
S.J.Joh,
M.C.Kim,
E.K.Lee,
J.M.Park,
X.Lu,
J.M.Katz,
E.Spackman,
D.E.Swayne,
and
J.H.Kim
(2005).
Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea.
|
| |
J Virol,
79,
3692-3702.
|
 |
|
|
|
|
 |
D.R.Olson,
L.Simonsen,
P.J.Edelson,
and
S.S.Morse
(2005).
Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City.
|
| |
Proc Natl Acad Sci U S A,
102,
11059-11063.
|
 |
|
|
|
|
 |
E.Bianchi,
X.Liang,
P.Ingallinella,
M.Finotto,
M.A.Chastain,
J.Fan,
T.M.Fu,
H.C.Song,
M.S.Horton,
D.C.Freed,
W.Manger,
E.Wen,
L.Shi,
R.Ionescu,
C.Price,
M.Wenger,
E.A.Emini,
R.Cortese,
G.Ciliberto,
J.W.Shiver,
and
A.Pessi
(2005).
Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor.
|
| |
J Virol,
79,
7380-7388.
|
 |
|
|
|
|
 |
K.Nakajima,
E.Nobusawa,
A.Nagy,
and
S.Nakajima
(2005).
Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution.
|
| |
J Virol,
79,
6472-6477.
|
 |
|
|
|
|
 |
L.A.Mermel
(2005).
Pandemic avian influenza.
|
| |
Lancet Infect Dis,
5,
666-667.
|
 |
|
|
|
|
 |
L.Glaser,
J.Stevens,
D.Zamarin,
I.A.Wilson,
A.García-Sastre,
T.M.Tumpey,
C.F.Basler,
J.K.Taubenberger,
and
P.Palese
(2005).
A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity.
|
| |
J Virol,
79,
11533-11536.
|
 |
|
|
|
|
 |
L.Tang,
W.R.Marion,
G.Cingolani,
P.E.Prevelige,
and
J.E.Johnson
(2005).
Three-dimensional structure of the bacteriophage P22 tail machine.
|
| |
EMBO J,
24,
2087-2095.
|
 |
|
|
|
|
 |
M.Drancourt,
and
D.Raoult
(2005).
Palaeomicrobiology: current issues and perspectives.
|
| |
Nat Rev Microbiol,
3,
23-35.
|
 |
|
|
|
|
 |
R.A.Fouchier,
G.F.Rimmelzwaan,
T.Kuiken,
and
A.D.Osterhaus
(2005).
Newer respiratory virus infections: human metapneumovirus, avian influenza virus, and human coronaviruses.
|
| |
Curr Opin Infect Dis,
18,
141-146.
|
 |
|
|
|
|
 |
R.A.Lamb,
and
D.Jackson
(2005).
Extinct 1918 virus comes alive.
|
| |
Nat Med,
11,
1154-1156.
|
 |
|
|
|
|
 |
T.Horimoto,
and
Y.Kawaoka
(2005).
Influenza: lessons from past pandemics, warnings from current incidents.
|
| |
Nat Rev Microbiol,
3,
591-600.
|
 |
|
|
|
|
 |
Y.Suzuki
(2005).
Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses.
|
| |
Biol Pharm Bull,
28,
399-408.
|
 |
|
|
|
|
 |
Z.N.Li,
S.N.Mueller,
L.Ye,
Z.Bu,
C.Yang,
R.Ahmed,
and
D.A.Steinhauer
(2005).
Chimeric influenza virus hemagglutinin proteins containing large domains of the Bacillus anthracis protective antigen: protein characterization, incorporation into infectious influenza viruses, and antigenicity.
|
| |
J Virol,
79,
10003-10012.
|
 |
|
|
|
|
 |
A.H.Reid,
T.G.Fanning,
T.A.Janczewski,
R.M.Lourens,
and
J.K.Taubenberger
(2004).
Novel origin of the 1918 pandemic influenza virus nucleoprotein gene.
|
| |
J Virol,
78,
12462-12470.
|
 |
|
|
|
|
 |
B.E.Collins,
and
J.C.Paulson
(2004).
Cell surface biology mediated by low affinity multivalent protein-glycan interactions.
|
| |
Curr Opin Chem Biol,
8,
617-625.
|
 |
|
|
|
|
 |
C.Grose,
and
K.Chokephaibulkit
(2004).
Avian influenza virus infection of children in Vietnam and Thailand.
|
| |
Pediatr Infect Dis J,
23,
793-794.
|
 |
|
|
|
|
 |
D.Kobasa,
A.Takada,
K.Shinya,
M.Hatta,
P.Halfmann,
S.Theriault,
H.Suzuki,
H.Nishimura,
K.Mitamura,
N.Sugaya,
T.Usui,
T.Murata,
Y.Maeda,
S.Watanabe,
M.Suresh,
T.Suzuki,
Y.Suzuki,
H.Feldmann,
and
Y.Kawaoka
(2004).
Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.
|
| |
Nature,
431,
703-707.
|
 |
|
|
|
|
 |
D.M.Morens,
G.K.Folkers,
and
A.S.Fauci
(2004).
The challenge of emerging and re-emerging infectious diseases.
|
| |
Nature,
430,
242-249.
|
 |
|
|
|
|
 |
J.S.Peiris,
and
Y.Guan
(2004).
Confronting SARS: a view from Hong Kong.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
1075-1079.
|
 |
|
|
|
|
 |
L.O.Gostin
(2004).
Pandemic Influenza: public health preparedness for the next global health emergency.
|
| |
J Law Med Ethics,
32,
565-573.
|
 |
|
|
|
|
 |
R.M.Bush
(2004).
Influenza as a model system for studying the cross-species transfer and evolution of the SARS coronavirus.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
1067-1073.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |