spacer
spacer

PDBsum entry 1rcc

Go to PDB code: 
protein ligands links
Iron storage PDB id
1rcc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
171 a.a. *
Ligands
BET
Waters ×29
* Residue conservation analysis
PDB id:
1rcc
Name: Iron storage
Title: Bullfrog red cell l ferritin tartrate/mg/ph 5.5
Structure: L ferritin. Chain: a. Engineered: yes. Mutation: yes
Source: Rana catesbeiana. Bullfrog. Organism_taxid: 8400. Cell: red cell. Gene: cdna. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: 24mer (from PQS)
Resolution:
2.40Å     R-factor:   0.189     R-free:   0.272
Authors: J.Trikha,E.C.Theil,N.M.Allewell
Key ref: J.Trikha et al. (1995). High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol, 248, 949-967. PubMed id: 7760335
Date:
04-Aug-95     Release date:   14-Nov-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P07797  (FRI3_LITCT) -  Ferritin, lower subunit from Lithobates catesbeianus
Seq:
Struc:
173 a.a.
171 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 

 
J Mol Biol 248:949-967 (1995)
PubMed id: 7760335  
 
 
High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.
J.Trikha, E.C.Theil, N.M.Allewell.
 
  ABSTRACT  
 
Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu-->Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu-->Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21195349 I.De Domenico, M.B.Vaughn, P.N.Paradkar, E.Lo, D.M.Ward, and J.Kaplan (2011).
Decoupling ferritin synthesis from free cytosolic iron results in ferritin secretion.
  Cell Metab, 13, 57-67.  
20150955 S.Zeng, H.Liu, and Q.Yang (2010).
Application of symmetry adapted function method for three-dimensional reconstruction of octahedral biological macromolecules.
  Int J Biomed Imaging, 2010, 195274.  
20146274 T.Ueno, S.Abe, T.Koshiyama, T.Ohki, T.Hikage, and Y.Watanabe (2010).
Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.
  Chemistry, 16, 2730-2740.
PDB codes: 3a8z 3a90 3a91 3a92 3a93 3a94 3a95 3a96
19652809 M.Suzuki, M.Abe, T.Ueno, S.Abe, T.Goto, Y.Toda, T.Akita, Y.Yamada, and Y.Watanabe (2009).
Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin.
  Chem Commun (Camb), (), 4871-4873.
PDB code: 3h7g
  19262678 E.C.Theil, X.S.Liu, and T.Tosha (2008).
GATED PORES IN THE FERRITIN PROTEIN NANOCAGE.
  Inorganica Chim Acta, 361, 868-874.  
19055359 F.Bou-Abdallah, G.Zhao, G.Biasiotto, M.Poli, P.Arosio, and N.D.Chasteen (2008).
Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W.
  J Am Chem Soc, 130, 17801-17811.  
18576633 J.K.Schwartz, X.S.Liu, T.Tosha, E.C.Theil, and E.I.Solomon (2008).
Spectroscopic definition of the ferroxidase site in M ferritin: comparison of binuclear substrate vs cofactor active sites.
  J Am Chem Soc, 130, 9441-9450.  
18805796 M.R.Hasan, T.Tosha, and E.C.Theil (2008).
Ferritin Contains Less Iron (59Fe) in Cells When the Protein Pores Are Unfolded by Mutation.
  J Biol Chem, 283, 31394-31400.  
18266212 S.K.Narasimhan, X.Lu, and Y.Y.Luk (2008).
Chiral molecules with polyhedral T, O, or I symmetry: theoretical solution to a difficult problem in stereochemistry.
  Chirality, 20, 878-884.  
19011101 T.Tosha, M.R.Hasan, and E.C.Theil (2008).
The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway.
  Proc Natl Acad Sci U S A, 105, 18182-18187.  
18078545 C.D.Putnam, M.Hammel, G.L.Hura, and J.A.Tainer (2007).
X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution.
  Q Rev Biophys, 40, 191-285.  
17554497 M.Matzapetakis, P.Turano, E.C.Theil, and I.Bertini (2007).
13C- 13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin.
  J Biomol NMR, 38, 237-242.  
16868744 E.C.Theil, M.Matzapetakis, and X.Liu (2006).
Ferritins: iron/oxygen biominerals in protein nanocages.
  J Biol Inorg Chem, 11, 803-810.  
16861227 X.Liu, K.Kim, T.Leighton, and E.C.Theil (2006).
Paired Bacillus anthracis Dps (mini-ferritin) have different reactivities with peroxide.
  J Biol Chem, 281, 27827-27835.  
16790936 Z.Wang, C.Li, M.Ellenburg, E.Soistman, J.Ruble, B.Wright, J.X.Ho, and D.C.Carter (2006).
Structure of human ferritin L chain.
  Acta Crystallogr D Biol Crystallogr, 62, 800-806.
PDB codes: 2ffx 2fg4 2fg8
15166287 X.Liu, and E.C.Theil (2004).
Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate.
  Proc Natl Acad Sci U S A, 101, 8557-8562.  
12950250 D.L.Geiser, C.A.Chavez, R.Flores-Munguia, J.J.Winzerling, and D.Q.Pham (2003).
Aedes aegypti ferritin.
  Eur J Biochem, 270, 3667-3674.  
12876316 M.A.Kilic, S.Spiro, and G.R.Moore (2003).
Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein.
  Protein Sci, 12, 1663-1674.  
12627224 S.Macedo, C.V.Romão, E.Mitchell, P.M.Matias, M.Y.Liu, A.V.Xavier, J.LeGall, M.Teixeira, P.Lindley, and M.A.Carrondo (2003).
The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans.
  Nat Struct Biol, 10, 285-290.
PDB codes: 1nf4 1nf6 1nfv
12730190 T.J.Stillman, P.P.Connolly, C.L.Latimer, A.F.Morland, M.A.Quail, S.C.Andrews, A.Treffry, J.R.Guest, P.J.Artymiuk, and P.M.Harrison (2003).
Insights into the effects on metal binding of the systematic substitution of five key glutamate ligands in the ferritin of Escherichia coli.
  J Biol Chem, 278, 26275-26286.  
12634425 X.Liu, W.Jin, and E.C.Theil (2003).
Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral.
  Proc Natl Acad Sci U S A, 100, 3653-3658.  
12455693 S.La Fontaine, J.M.Quinn, S.S.Nakamoto, M.D.Page, V.Göhre, J.L.Moseley, J.Kropat, and S.Merchant (2002).
Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.
  Eukaryot Cell, 1, 736-757.  
11679711 T.Granier, B.Gallois, B.Langlois d'Estaintot, A.Dautant, J.M.Chevalier, J.M.Mellado, C.Beaumont, P.Santambrogio, P.Arosio, and G.Precigoux (2001).
Structure of mouse L-chain ferritin at 1.6 A resolution.
  Acta Crystallogr D Biol Crystallogr, 57, 1491-1497.
PDB code: 1h96
11051552 M.M.Wösten, L.F.Kox, S.Chamnongpol, F.C.Soncini, and E.A.Groisman (2000).
A signal transduction system that responds to extracellular iron.
  Cell, 103, 113-125.  
10771433 T.Granier, B.Gallois, B.Langlois D'Estaintot, A.Dautant, G.Comberton, J.M.Mellado, C.Beaumont, P.Santambrogio, P.Arosio, and G.Precigoux (2000).
Crystallization and preliminary X-ray diffraction data of mouse L-chain apoferritin crystals.
  Acta Crystallogr D Biol Crystallogr, 56, 634-636.  
10608875 J.L.Urbanowski, and R.C.Piper (1999).
The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane.
  J Biol Chem, 274, 38061-38070.  
9706232 D.J.Eide (1998).
The molecular biology of metal ion transport in Saccharomyces cerevisiae.
  Annu Rev Nutr, 18, 441-469.  
9668036 H.Takagi, D.Shi, Y.Ha, N.M.Allewell, and E.C.Theil (1998).
Localized unfolding at the junction of three ferritin subunits. A mechanism for iron release?
  J Biol Chem, 273, 18685-18688.
PDB code: 1bg7
9694900 J.Yu, and M.Wessling-Resnick (1998).
Structural and functional analysis of SFT, a stimulator of Fe Transport.
  J Biol Chem, 273, 21380-21385.  
9516467 R.F.Hassett, A.M.Romeo, and D.J.Kosman (1998).
Regulation of high affinity iron uptake in the yeast Saccharomyces cerevisiae. Role of dioxygen and Fe.
  J Biol Chem, 273, 7628-7636.  
  9605313 T.Douglas, and D.R.Ripoll (1998).
Calculated electrostatic gradients in recombinant human H-chain ferritin.
  Protein Sci, 7, 1083-1091.  
9362508 J.A.Gutierrez, J.Yu, S.Rivera, and M.Wessling-Resnick (1997).
Functional expression cloning and characterization of SFT, a stimulator of Fe transport.
  J Cell Biol, 139, 895-905.  
  8661994 D.Proudhon, J.Wei, J.Briat, and E.C.Theil (1996).
Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints.
  J Mol Evol, 42, 325-336.  
8695634 P.M.Harrison, and P.Arosio (1996).
The ferritins: molecular properties, iron storage function and cellular regulation.
  Biochim Biophys Acta, 1275, 161-203.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer