 |
PDBsum entry 1qzc
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
RNA binding protein/RNA
|
PDB id
|
|
|
|
1qzc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
* C-alpha coords only
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
RNA binding protein/RNA
|
 |
|
Title:
|
 |
Coordinates of s12, sh44, lh69 and srl separately fitted into the cryo-em map of ef-tu ternary complex (gdp.Kirromycin) bound 70s ribosome
|
|
Structure:
|
 |
16s rrna. Chain: a. Fragment: helix 44. 23s rrna. Chain: b. Fragment: helix 69. 23s rrna. Chain: c. Fragment: sarcin/ricin loop (srl).
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Strain: mre 600. Thermus thermophilus. Organism_taxid: 274
|
|
Authors:
|
 |
M.Valle,A.Zavialov,W.Li,S.M.Stagg,J.Sengupta,R.C.Nielsen,P.Nissen, S.C.Harvey,M.Ehrenberg,J.Frank
|
Key ref:
|
 |
M.Valle
et al.
(2003).
Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.
Nat Struct Biol,
10,
899-906.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
16-Sep-03
|
Release date:
|
04-Nov-03
|
|
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q5SHN3
(RS12_THET8) -
Small ribosomal subunit protein uS12 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
132 a.a.
124 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
|
|
|
|
|
|
|
|
|
C-G-C-C-C-G-U-C-A-C-G-C-C-A-U-G-G-G-A-G-C-G-U-G-A-C-U-G-G-G-G-C-G-A-A-G-U-C-G-
44 bases
|
|
|
|
G-G-C-C-G-U-A-A-C-U-A-U-A-A-C-G-G-U-C-C
20 bases
|
|
|
|
G-A-C-C-G-U-A-U-A-G-U-A-C-G-A-G-A-G-G-A-A-C-U-A-C-G-G
27 bases
|
|
|
 |
 |
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Struct Biol
10:899-906
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.
|
|
M.Valle,
A.Zavialov,
W.Li,
S.M.Stagg,
J.Sengupta,
R.C.Nielsen,
P.Nissen,
S.C.Harvey,
M.Ehrenberg,
J.Frank.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary
complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a
cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A,
showing that during the incorporation of the aa-tRNA into the 70S ribosome of
Escherichia coli, the flexibility of aa-tRNA allows the initial codon
recognition and its accommodation into the ribosomal A site. In addition, a
conformational change observed in the GTPase-associated center (GAC) of the
ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a
relative movement of the aa-tRNA with respect to EF-Tu. This relative
rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and
to provide the codon-anticodon recognition-dependent signal for the GTPase
activity of EF-Tu. From these new findings we propose a mechanism that can
explain the sequence of events during the decoding of mRNA on the ribosome.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Topology of the decoding site. (a) 30S subunit
portion isolated from the 70S -fMet-tRNA^fMet -Phe-tRNA^Phe
-EF-Tu -GDP -kir complex, seen from the intersubunit space. The
architecture of the decoding site (dc) shows a density in the
region of the A-site codon (labeled with an asterisk) and a
low-density region (indicated by an arrow) within SH44. (b)
Ribbons representation of the docked atomic coordinates for
SH44, ribosomal protein S12 (S12), SH18 and the A site codon
(cd) from Ogle and co-workers21 within the density region
extracted from a.
|
 |
Figure 6.
Figure 6. Coupling of the conformational change of the GAC with
the movement of aa-tRNA. (a) Comparison of the aa-tRNA
position defined inside the cryo-EM density for the ternary
complex (green) versus the position of the aa-tRNA in the atomic
coordinates of Phe-tRNA^Phe -EF-Tu -GDPNP -kir (gray). The
ribbons representation of the GAC and the SRL serves as a frame
of reference to make it apparent that the change in the aa-tRNA
position follows the conformational change of the GAC while the
aa-tRNA maintains its position in the region of the SRL. The GAC
position shown correspond to the fitting of the atomic
coordinates in the 'closed' GAC from the 70S -fMet-tRNA^fMet
-Phe-tRNA^Phe -EF-Tu -GDP -kir complex. The ribosomal
orientation is depicted in the thumbnail. (b -d) The postulated
coupling between the movement of the GAC and the approach of the
aa-tRNA to LH69. In a hypothetical initial binding, the 'open'
GAC would interact with the aa-tRNA delivered in the ternary
complex by EF-Tu (b). The transition of the GAC to the closed
conformation (c) brings the aa-tRNA in contact with LH69. The
aa-tRNA -LH69 interaction facilitates a distortion in the
aa-tRNA (d) that reorients the anticodon arm (in the region
encircled) and allows a codon (cd)-anticodon recognition.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(2003,
10,
899-906)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Chen,
B.Stevens,
J.Kaur,
D.Cabral,
H.Liu,
Y.Wang,
H.Zhang,
G.Rosenblum,
Z.Smilansky,
Y.E.Goldman,
and
B.S.Cooperman
(2011).
Single-molecule fluorescence measurements of ribosomal translocation dynamics.
|
| |
Mol Cell,
42,
367-377.
|
 |
|
|
|
|
 |
C.Y.Liu,
M.T.Qureshi,
and
T.H.Lee
(2011).
Interaction Strengths between the Ribosome and tRNA at Various Steps of Translocation.
|
| |
Biophys J,
100,
2201-2208.
|
 |
|
|
|
|
 |
W.Li,
L.G.Trabuco,
K.Schulten,
and
J.Frank
(2011).
Molecular dynamics of EF-G during translocation.
|
| |
Proteins,
79,
1478-1486.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Agirrezabala,
E.Schreiner,
L.G.Trabuco,
J.Lei,
R.F.Ortiz-Meoz,
K.Schulten,
R.Green,
and
J.Frank
(2011).
Structural insights into cognate versus near-cognate discrimination during decoding.
|
| |
EMBO J,
30,
1497-1507.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Guo,
M.Gibson,
S.Sitha,
S.Chu,
and
U.Mohanty
(2011).
Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome.
|
| |
Proc Natl Acad Sci U S A,
108,
3947-3951.
|
 |
|
|
|
|
 |
J.Frank,
and
R.L.Gonzalez
(2010).
Structure and dynamics of a processive Brownian motor: the translating ribosome.
|
| |
Annu Rev Biochem,
79,
381-412.
|
 |
|
|
|
|
 |
K.Réblová,
F.Rázga,
W.Li,
H.Gao,
J.Frank,
and
J.Sponer
(2010).
Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM.
|
| |
Nucleic Acids Res,
38,
1325-1340.
|
 |
|
|
|
|
 |
N.Clementi,
A.Chirkova,
B.Puffer,
R.Micura,
and
N.Polacek
(2010).
Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation.
|
| |
Nat Chem Biol,
6,
344-351.
|
 |
|
|
|
|
 |
P.Khade,
and
S.Joseph
(2010).
Functional interactions by transfer RNAs in the ribosome.
|
| |
FEBS Lett,
584,
420-426.
|
 |
|
|
|
|
 |
X.Agirrezabala,
and
J.Frank
(2010).
From DNA to proteins via the ribosome: structural insights into the workings of the translation machinery.
|
| |
Hum Genomics,
4,
226-237.
|
 |
|
|
|
|
 |
A.Devaraj,
S.Shoji,
E.D.Holbrook,
and
K.Fredrick
(2009).
A role for the 30S subunit E site in maintenance of the translational reading frame.
|
| |
RNA,
15,
255-265.
|
 |
|
|
|
|
 |
A.Matsumoto,
and
H.Ishida
(2009).
Global conformational changes of ribosome observed by normal mode fitting for 3D Cryo-EM structures.
|
| |
Structure,
17,
1605-1613.
|
 |
|
|
|
|
 |
A.S.Spirin
(2009).
The ribosome as a conveying thermal ratchet machine.
|
| |
J Biol Chem,
284,
21103-21119.
|
 |
|
|
|
|
 |
B.S.Shin,
J.R.Kim,
M.G.Acker,
K.N.Maher,
J.R.Lorsch,
and
T.E.Dever
(2009).
rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.
|
| |
Mol Cell Biol,
29,
808-821.
|
 |
|
|
|
|
 |
D.M.Hamburg,
M.J.Suh,
and
P.A.Limbach
(2009).
Limited proteolysis analysis of the ribosome is affected by subunit association.
|
| |
Biopolymers,
91,
410-422.
|
 |
|
|
|
|
 |
D.N.Wilson
(2009).
The A-Z of bacterial translation inhibitors.
|
| |
Crit Rev Biochem Mol Biol,
44,
393-433.
|
 |
|
|
|
|
 |
E.Villa,
J.Sengupta,
L.G.Trabuco,
J.LeBarron,
W.T.Baxter,
T.R.Shaikh,
R.A.Grassucci,
P.Nissen,
M.Ehrenberg,
K.Schulten,
and
J.Frank
(2009).
Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis.
|
| |
Proc Natl Acad Sci U S A,
106,
1063-1068.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Brandt,
S.A.Etchells,
J.O.Ortiz,
A.H.Elcock,
F.U.Hartl,
and
W.Baumeister
(2009).
The native 3D organization of bacterial polysomes.
|
| |
Cell,
136,
261-271.
|
 |
|
|
|
|
 |
H.S.Zaher,
and
R.Green
(2009).
Fidelity at the molecular level: lessons from protein synthesis.
|
| |
Cell,
136,
746-762.
|
 |
|
|
|
|
 |
J.C.Schuette,
F.V.Murphy,
A.C.Kelley,
J.R.Weir,
J.Giesebrecht,
S.R.Connell,
J.Loerke,
T.Mielke,
W.Zhang,
P.A.Penczek,
V.Ramakrishnan,
and
C.M.Spahn
(2009).
GTPase activation of elongation factor EF-Tu by the ribosome during decoding.
|
| |
EMBO J,
28,
755-765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.R.Sharma,
T.M.Booth,
L.Simpson,
D.A.Maslov,
and
R.K.Agrawal
(2009).
Structure of a mitochondrial ribosome with minimal RNA.
|
| |
Proc Natl Acad Sci U S A,
106,
9637-9642.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Shoji,
S.E.Walker,
and
K.Fredrick
(2009).
Ribosomal translocation: one step closer to the molecular mechanism.
|
| |
ACS Chem Biol,
4,
93.
|
 |
|
|
|
|
 |
S.T.Gregory,
J.F.Carr,
and
A.E.Dahlberg
(2009).
A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA.
|
| |
RNA,
15,
208-214.
|
 |
|
|
|
|
 |
T.Dale,
R.P.Fahlman,
M.Olejniczak,
and
O.C.Uhlenbeck
(2009).
Specificity of the ribosomal A site for aminoacyl-tRNAs.
|
| |
Nucleic Acids Res,
37,
1202-1210.
|
 |
|
|
|
|
 |
T.M.Schmeing,
and
V.Ramakrishnan
(2009).
What recent ribosome structures have revealed about the mechanism of translation.
|
| |
Nature,
461,
1234-1242.
|
 |
|
|
|
|
 |
X.Agirrezabala,
and
J.Frank
(2009).
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
|
| |
Q Rev Biophys,
42,
159-200.
|
 |
|
|
|
|
 |
C.O.Sorzano,
J.A.Velázquez-Muriel,
R.Marabini,
G.T.Herman,
and
J.M.Carazo
(2008).
Volumetric restrictions in single particle 3DEM reconstruction.
|
| |
Pattern Recognit,
41,
616.
|
 |
|
|
|
|
 |
D.Pan,
C.M.Zhang,
S.Kirillov,
Y.M.Hou,
and
B.S.Cooperman
(2008).
Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle.
|
| |
J Biol Chem,
283,
18431-18440.
|
 |
|
|
|
|
 |
J.LeBarron,
R.A.Grassucci,
T.R.Shaikh,
W.T.Baxter,
J.Sengupta,
and
J.Frank
(2008).
Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome.
|
| |
J Struct Biol,
164,
24-32.
|
 |
|
|
|
|
 |
J.M.Harms,
D.N.Wilson,
F.Schluenzen,
S.R.Connell,
T.Stachelhaus,
Z.Zaborowska,
C.M.Spahn,
and
P.Fucini
(2008).
Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin.
|
| |
Mol Cell,
30,
26-38.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Sengupta,
J.Nilsson,
R.Gursky,
M.Kjeldgaard,
P.Nissen,
and
J.Frank
(2008).
Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy.
|
| |
J Mol Biol,
382,
179-187.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Bakowska-Zywicka,
A.M.Kietrys,
and
T.Twardowski
(2008).
Antisense oligonucleotides targeting universally conserved 26S rRNA domains of plant ribosomes at different steps of polypeptide elongation.
|
| |
Oligonucleotides,
18,
175-186.
|
 |
|
|
|
|
 |
L.E.Lancaster,
A.Savelsbergh,
C.Kleanthous,
W.Wintermeyer,
and
M.V.Rodnina
(2008).
Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes.
|
| |
Mol Microbiol,
69,
390-401.
|
 |
|
|
|
|
 |
L.G.Trabuco,
E.Villa,
K.Mitra,
J.Frank,
and
K.Schulten
(2008).
Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.
|
| |
Structure,
16,
673-683.
|
 |
|
|
|
|
 |
L.Lancaster,
N.J.Lambert,
E.J.Maklan,
L.H.Horan,
and
H.F.Noller
(2008).
The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit.
|
| |
RNA,
14,
1999-2012.
|
 |
|
|
|
|
 |
M.Johansson,
M.Lovmar,
and
M.Ehrenberg
(2008).
Rate and accuracy of bacterial protein synthesis revisited.
|
| |
Curr Opin Microbiol,
11,
141-147.
|
 |
|
|
|
|
 |
M.Topf,
K.Lasker,
B.Webb,
H.Wolfson,
W.Chiu,
and
A.Sali
(2008).
Protein structure fitting and refinement guided by cryo-EM density.
|
| |
Structure,
16,
295-307.
|
 |
|
|
|
|
 |
P.Chandramouli,
M.Topf,
J.F.Ménétret,
N.Eswar,
J.J.Cannone,
R.R.Gutell,
A.Sali,
and
C.W.Akey
(2008).
Structure of the mammalian 80S ribosome at 8.7 A resolution.
|
| |
Structure,
16,
535-548.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.F.Agris
(2008).
Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications.
|
| |
EMBO Rep,
9,
629-635.
|
 |
|
|
|
|
 |
R.A.Grassucci,
D.Taylor,
and
J.Frank
(2008).
Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes.
|
| |
Nat Protoc,
3,
330-339.
|
 |
|
|
|
|
 |
R.A.Marshall,
C.E.Aitken,
M.Dorywalska,
and
J.D.Puglisi
(2008).
Translation at the single-molecule level.
|
| |
Annu Rev Biochem,
77,
177-203.
|
 |
|
|
|
|
 |
R.K.Tan,
B.Devkota,
and
S.C.Harvey
(2008).
YUP.SCX: coaxing atomic models into medium resolution electron density maps.
|
| |
J Struct Biol,
163,
163-174.
|
 |
|
|
|
|
 |
S.Ledoux,
and
O.C.Uhlenbeck
(2008).
Different aa-tRNAs are selected uniformly on the ribosome.
|
| |
Mol Cell,
31,
114-123.
|
 |
|
|
|
|
 |
S.R.Connell,
M.Topf,
Y.Qin,
D.N.Wilson,
T.Mielke,
P.Fucini,
K.H.Nierhaus,
and
C.M.Spahn
(2008).
A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation.
|
| |
Nat Struct Mol Biol,
15,
910-915.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.A.Steitz
(2008).
A structural understanding of the dynamic ribosome machine.
|
| |
Nat Rev Mol Cell Biol,
9,
242-253.
|
 |
|
|
|
|
 |
T.Miyoshi,
and
T.Uchiumi
(2008).
Functional interaction between bases C1049 in domain II and G2751 in domain VI of 23S rRNA in Escherichia coli ribosomes.
|
| |
Nucleic Acids Res,
36,
1783-1791.
|
 |
|
|
|
|
 |
T.V.Budkevich,
A.V.El'skaya,
and
K.H.Nierhaus
(2008).
Features of 80S mammalian ribosome and its subunits.
|
| |
Nucleic Acids Res,
36,
4736-4744.
|
 |
|
|
|
|
 |
W.Li,
X.Agirrezabala,
J.Lei,
L.Bouakaz,
J.L.Brunelle,
R.F.Ortiz-Meoz,
R.Green,
S.Sanyal,
M.Ehrenberg,
and
J.Frank
(2008).
Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM.
|
| |
EMBO J,
27,
3322-3331.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Agirrezabala,
J.Lei,
J.L.Brunelle,
R.F.Ortiz-Meoz,
R.Green,
and
J.Frank
(2008).
Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome.
|
| |
Mol Cell,
32,
190-197.
|
 |
|
|
|
|
 |
A.Korostelev,
and
H.F.Noller
(2007).
Analysis of structural dynamics in the ribosome by TLS crystallographic refinement.
|
| |
J Mol Biol,
373,
1058-1070.
|
 |
|
|
|
|
 |
A.L.Konevega,
N.Fischer,
Y.P.Semenkov,
H.Stark,
W.Wintermeyer,
and
M.V.Rodnina
(2007).
Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.
|
| |
Nat Struct Mol Biol,
14,
318-324.
|
 |
|
|
|
|
 |
D.J.Taylor,
J.Nilsson,
A.R.Merrill,
G.R.Andersen,
P.Nissen,
and
J.Frank
(2007).
Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.
|
| |
EMBO J,
26,
2421-2431.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.R.Jonker,
S.Ilin,
S.K.Grimm,
J.Wöhnert,
and
H.Schwalbe
(2007).
L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy.
|
| |
Nucleic Acids Res,
35,
441-454.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.B.Munro,
R.B.Altman,
N.O'Connor,
and
S.C.Blanchard
(2007).
Identification of two distinct hybrid state intermediates on the ribosome.
|
| |
Mol Cell,
25,
505-517.
|
 |
|
|
|
|
 |
J.Frank,
H.Gao,
J.Sengupta,
N.Gao,
and
D.J.Taylor
(2007).
The process of mRNA-tRNA translocation.
|
| |
Proc Natl Acad Sci U S A,
104,
19671-19678.
|
 |
|
|
|
|
 |
L.Cochella,
J.L.Brunelle,
and
R.Green
(2007).
Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome.
|
| |
Nat Struct Mol Biol,
14,
30-36.
|
 |
|
|
|
|
 |
L.E.Sanderson,
and
O.C.Uhlenbeck
(2007).
Directed mutagenesis identifies amino acid residues involved in elongation factor Tu binding to yeast Phe-tRNAPhe.
|
| |
J Mol Biol,
368,
119-130.
|
 |
|
|
|
|
 |
M.A.Ditzler,
E.A.Alemán,
D.Rueda,
and
N.G.Walter
(2007).
Focus on function: single molecule RNA enzymology.
|
| |
Biopolymers,
87,
302-316.
|
 |
|
|
|
|
 |
M.E.Saks,
and
J.S.Conery
(2007).
Anticodon-dependent conservation of bacterial tRNA gene sequences.
|
| |
RNA,
13,
651-660.
|
 |
|
|
|
|
 |
R.A.Grassucci,
D.J.Taylor,
and
J.Frank
(2007).
Preparation of macromolecular complexes for cryo-electron microscopy.
|
| |
Nat Protoc,
2,
3239-3246.
|
 |
|
|
|
|
 |
R.L.Gonzalez,
S.Chu,
and
J.D.Puglisi
(2007).
Thiostrepton inhibition of tRNA delivery to the ribosome.
|
| |
RNA,
13,
2091-2097.
|
 |
|
|
|
|
 |
R.Oliva,
A.Tramontano,
and
L.Cavallo
(2007).
Mg2+ binding and archaeosine modification stabilize the G15 C48 Levitt base pair in tRNAs.
|
| |
RNA,
13,
1427-1436.
|
 |
|
|
|
|
 |
S.R.Connell,
C.Takemoto,
D.N.Wilson,
H.Wang,
K.Murayama,
T.Terada,
M.Shirouzu,
M.Rost,
M.Schüler,
J.Giesebrecht,
M.Dabrowski,
T.Mielke,
P.Fucini,
S.Yokoyama,
and
C.M.Spahn
(2007).
Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors.
|
| |
Mol Cell,
25,
751-764.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Li,
and
J.Frank
(2007).
Transfer RNA in the hybrid P/E state: correlating molecular dynamics simulations with cryo-EM data.
|
| |
Proc Natl Acad Sci U S A,
104,
16540-16545.
|
 |
|
|
|
|
 |
X.Yan,
K.A.Dryden,
J.Tang,
and
T.S.Baker
(2007).
Ab initio random model method facilitates 3D reconstruction of icosahedral particles.
|
| |
J Struct Biol,
157,
211-225.
|
 |
|
|
|
|
 |
A.Korostelev,
S.Trakhanov,
M.Laurberg,
and
H.F.Noller
(2006).
Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.
|
| |
Cell,
126,
1065-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Liljas
(2006).
On the complementarity of methods in structural biology.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
941-945.
|
 |
|
|
|
|
 |
C.Maeder,
G.L.Conn,
and
D.E.Draper
(2006).
Optimization of a ribosomal structural domain by natural selection.
|
| |
Biochemistry,
45,
6635-6643.
|
 |
|
|
|
|
 |
F.Tama,
G.Ren,
C.L.Brooks,
and
A.K.Mitra
(2006).
Model of the toxic complex of anthrax: responsive conformational changes in both the lethal factor and the protective antigen heptamer.
|
| |
Protein Sci,
15,
2190-2200.
|
 |
|
|
|
|
 |
I.K.Ali,
L.Lancaster,
J.Feinberg,
S.Joseph,
and
H.F.Noller
(2006).
Deletion of a conserved, central ribosomal intersubunit RNA bridge.
|
| |
Mol Cell,
23,
865-874.
|
 |
|
|
|
|
 |
K.Mitra,
C.Schaffitzel,
F.Fabiola,
M.S.Chapman,
N.Ban,
and
J.Frank
(2006).
Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
|
| |
Mol Cell,
22,
533-543.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Mitra,
and
J.Frank
(2006).
Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps.
|
| |
Annu Rev Biophys Biomol Struct,
35,
299-317.
|
 |
|
|
|
|
 |
K.P.Hofmann,
C.M.Spahn,
R.Heinrich,
and
U.Heinemann
(2006).
Building functional modules from molecular interactions.
|
| |
Trends Biochem Sci,
31,
497-508.
|
 |
|
|
|
|
 |
M.Halic,
M.Blau,
T.Becker,
T.Mielke,
M.R.Pool,
K.Wild,
I.Sinning,
and
R.Beckmann
(2006).
Following the signal sequence from ribosomal tunnel exit to signal recognition particle.
|
| |
Nature,
444,
507-511.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Hirabayashi,
N.S.Sato,
and
T.Suzuki
(2006).
Conserved loop sequence of helix 69 in Escherichia coli 23 S rRNA is involved in A-site tRNA binding and translational fidelity.
|
| |
J Biol Chem,
281,
17203-17211.
|
 |
|
|
|
|
 |
O.Namy,
S.J.Moran,
D.I.Stuart,
R.J.Gilbert,
and
I.Brierley
(2006).
A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
|
| |
Nature,
441,
244-247.
|
 |
|
|
|
|
 |
S.Kaur,
R.Gillet,
W.Li,
R.Gursky,
and
J.Frank
(2006).
Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome.
|
| |
Proc Natl Acad Sci U S A,
103,
16484-16489.
|
 |
|
|
|
|
 |
W.Li,
J.Sengupta,
B.K.Rath,
and
J.Frank
(2006).
Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations.
|
| |
RNA,
12,
1240-1253.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Shimizu,
and
T.Ueda
(2006).
SmpB triggers GTP hydrolysis of elongation factor Tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation.
|
| |
J Biol Chem,
281,
15987-15996.
|
 |
|
|
|
|
 |
A.Liiv,
D.Karitkina,
U.Maiväli,
and
J.Remme
(2005).
Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis.
|
| |
BMC Mol Biol,
6,
18.
|
 |
|
|
|
|
 |
A.V.Zavialov,
V.V.Hauryliuk,
and
M.Ehrenberg
(2005).
Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs.
|
| |
J Biol,
4,
9.
|
 |
|
|
|
|
 |
B.S.Schuwirth,
M.A.Borovinskaya,
C.W.Hau,
W.Zhang,
A.Vila-Sanjurjo,
J.M.Holton,
and
J.H.Cate
(2005).
Structures of the bacterial ribosome at 3.5 A resolution.
|
| |
Science,
310,
827-834.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.L.Shenvi,
K.C.Dong,
E.M.Friedman,
J.A.Hanson,
and
J.H.Cate
(2005).
Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics.
|
| |
RNA,
11,
1898-1908.
|
 |
|
|
|
|
 |
C.S.Fraser,
and
J.W.Hershey
(2005).
Movement in ribosome translocation.
|
| |
J Biol,
4,
8.
|
 |
|
|
|
|
 |
D.E.Brodersen,
and
P.Nissen
(2005).
The social life of ribosomal proteins.
|
| |
FEBS J,
272,
2098-2108.
|
 |
|
|
|
|
 |
F.Rázga,
J.Koca,
J.Sponer,
and
N.B.Leontis
(2005).
Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases.
|
| |
Biophys J,
88,
3466-3485.
|
 |
|
|
|
|
 |
H.Gao,
and
J.Frank
(2005).
Molding atomic structures into intermediate-resolution cryo-EM density maps of ribosomal complexes using real-space refinement.
|
| |
Structure,
13,
401-406.
|
 |
|
|
|
|
 |
J.M.Ogle,
and
V.Ramakrishnan
(2005).
Structural insights into translational fidelity.
|
| |
Annu Rev Biochem,
74,
129-177.
|
 |
|
|
|
|
 |
J.Nilsson,
and
P.Nissen
(2005).
Elongation factors on the ribosome.
|
| |
Curr Opin Struct Biol,
15,
349-354.
|
 |
|
|
|
|
 |
J.Poehlsgaard,
and
S.Douthwaite
(2005).
The bacterial ribosome as a target for antibiotics.
|
| |
Nat Rev Microbiol,
3,
870-881.
|
 |
|
|
|
|
 |
K.Y.Sanbonmatsu,
S.Joseph,
and
C.S.Tung
(2005).
Simulating movement of tRNA into the ribosome during decoding.
|
| |
Proc Natl Acad Sci U S A,
102,
15854-15859.
|
 |
|
|
|
|
 |
L.Cochella,
and
R.Green
(2005).
An active role for tRNA in decoding beyond codon:anticodon pairing.
|
| |
Science,
308,
1178-1180.
|
 |
|
|
|
|
 |
M.Diaconu,
U.Kothe,
F.Schlünzen,
N.Fischer,
J.M.Harms,
A.G.Tonevitsky,
H.Stark,
M.V.Rodnina,
and
M.C.Wahl
(2005).
Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation.
|
| |
Cell,
121,
991.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Leibundgut,
C.Frick,
M.Thanbichler,
A.Böck,
and
N.Ban
(2005).
Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors.
|
| |
EMBO J,
24,
11-22.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.V.Sergiev,
D.V.Lesnyak,
D.E.Burakovsky,
S.V.Kiparisov,
A.A.Leonov,
A.A.Bogdanov,
R.Brimacombe,
and
O.A.Dontsova
(2005).
Alteration in location of a conserved GTPase-associated center of the ribosome induced by mutagenesis influences the structure of peptidyltransferase center and activity of elongation factor G.
|
| |
J Biol Chem,
280,
31882-31889.
|
 |
|
|
|
|
 |
S.Ilin,
A.Hoskins,
O.Ohlenschläger,
H.R.Jonker,
H.Schwalbe,
and
J.Wöhnert
(2005).
Domain reorientation and induced fit upon RNA binding: solution structure and dynamics of ribosomal protein L11 from Thermotoga maritima.
|
| |
Chembiochem,
6,
1611-1618.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Dale,
and
O.C.Uhlenbeck
(2005).
Binding of misacylated tRNAs to the ribosomal A site.
|
| |
RNA,
11,
1610-1615.
|
 |
|
|
|
|
 |
T.Daviter,
F.V.Murphy,
and
V.Ramakrishnan
(2005).
Molecular biology. A renewed focus on transfer RNA.
|
| |
Science,
308,
1123-1124.
|
 |
|
|
|
|
 |
W.Jiang,
and
S.J.Ludtke
(2005).
Electron cryomicroscopy of single particles at subnanometer resolution.
|
| |
Curr Opin Struct Biol,
15,
571-577.
|
 |
|
|
|
|
 |
A.Yonath,
and
A.Bashan
(2004).
Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics.
|
| |
Annu Rev Microbiol,
58,
233-251.
|
 |
|
|
|
|
 |
C.M.Spahn,
M.G.Gomez-Lorenzo,
R.A.Grassucci,
R.Jørgensen,
G.R.Andersen,
R.Beckmann,
P.A.Penczek,
J.P.Ballesta,
and
J.Frank
(2004).
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation.
|
| |
EMBO J,
23,
1008-1019.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.V.Orlova,
and
H.R.Saibil
(2004).
Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs.
|
| |
Curr Opin Struct Biol,
14,
584-590.
|
 |
|
|
|
|
 |
K.B.Gromadski,
and
M.V.Rodnina
(2004).
Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome.
|
| |
Nat Struct Mol Biol,
11,
316-322.
|
 |
|
|
|
|
 |
M.Léger,
S.Sidani,
and
L.Brakier-Gingras
(2004).
A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1.
|
| |
RNA,
10,
1225-1235.
|
 |
|
|
|
|
 |
R.K.Agrawal,
M.R.Sharma,
M.C.Kiel,
G.Hirokawa,
T.M.Booth,
C.M.Spahn,
R.A.Grassucci,
A.Kaji,
and
J.Frank
(2004).
Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications.
|
| |
Proc Natl Acad Sci U S A,
101,
8900-8905.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.C.Blanchard,
R.L.Gonzalez,
H.D.Kim,
S.Chu,
and
J.D.Puglisi
(2004).
tRNA selection and kinetic proofreading in translation.
|
| |
Nat Struct Mol Biol,
11,
1008-1014.
|
 |
|
|
|
|
 |
S.Subramaniam,
and
J.L.Milne
(2004).
Three-dimensional electron microscopy at molecular resolution.
|
| |
Annu Rev Biophys Biomol Struct,
33,
141-155.
|
 |
|
|
|
|
 |
Y.Yap,
X.Zhang,
M.T.Ling,
X.Wang,
Y.C.Wong,
and
A.Danchin
(2004).
Classification between normal and tumor tissues based on the pair-wise gene expression ratio.
|
| |
BMC Cancer,
4,
72.
|
 |
|
|
|
|
 |
J.Frank
(2003).
Toward an understanding of the structural basis of translation.
|
| |
Genome Biol,
4,
237.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |