 |
PDBsum entry 1qu0
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Metal binding protein
|
PDB id
|
|
|
|
1qu0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Metal binding protein
|
 |
|
Title:
|
 |
Crystal structure of the fifth laminin g-like module of the mouse laminin alpha2 chain
|
|
Structure:
|
 |
Laminin alpha2 chain. Chain: a, b, c, d. Fragment: lg5 module. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Mus musculus. House mouse. Organism_taxid: 10090.
|
|
Biol. unit:
|
 |
Dimer (from
)
|
|
Resolution:
|
 |
|
2.35Å
|
R-factor:
|
0.229
|
R-free:
|
0.255
|
|
|
Authors:
|
 |
E.Hohenester,D.Tisi,J.F.Talts,R.Timpl
|
Key ref:
|
 |
E.Hohenester
et al.
(1999).
The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin.
Mol Cell,
4,
783-792.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Jul-99
|
Release date:
|
03-Dec-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q60675
(LAMA2_MOUSE) -
Laminin subunit alpha-2 from Mus musculus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
3118 a.a.
181 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 2 residue positions (black
crosses)
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
4:783-792
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin.
|
|
E.Hohenester,
D.Tisi,
J.F.Talts,
R.Timpl.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin,
perlecan, and agrin mediate the binding to heparin and the cell surface receptor
alpha-dystroglycan (alpha-DG). These interactions are crucial to basement
membrane assembly, as well as muscle and nerve cell function. The crystal
structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta
sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic
residues and is surrounded by residues implicated in heparin and alpha-DG
binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of
anionic oligosaccharides. The structure demonstrates a conserved function of the
LG module in calcium-dependent lectin-like alpha-DG binding.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. The Calcium Binding SiteStereo view of the
calcium binding site in α2LG5 in a similar view as Figure 2.
The calcium ion is shown as a pink sphere. Residues coordinating
to the calcium ion are labeled. Hydrogen bonds to the sulfate
ion (see text) are shown as grey lines. A water molecule is also
bound to the calcium ion but is not shown for clarity. The
electron density shown is a difference Fourier map of the Sm
derivative calculated with the final model phases and contoured
at 10σ.
|
 |
Figure 4.
Figure 4. Comparison of the LG Module and Pentraxin
Folds(A) α2LG5 and (B) human SAP ([17]). Disulfide bridges are
in yellow, and calcium ions are shown as pink spheres. The SAP
subunit is viewed approximately down the 5-fold axis of the SAP
pentamer. Regions involved in subunit contacts in the pentamer
are indicated by the black arrows.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(1999,
4,
783-792)
copyright 1999.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.M.Sullivan,
S.F.Emonet,
M.J.Welch,
A.M.Lee,
K.P.Campbell,
J.C.de la Torre,
and
M.B.Oldstone
(2011).
Point mutation in the glycoprotein of lymphocytic choriomeningitis virus is necessary for receptor binding, dendritic cell infection, and long-term persistence.
|
| |
Proc Natl Acad Sci U S A,
108,
2969-2974.
|
 |
|
|
|
|
 |
K.Kojima,
H.Nosaka,
Y.Kishimoto,
Y.Nishiyama,
S.Fukuda,
M.Shimada,
K.Kodaka,
F.Saito,
K.Matsumura,
T.Shimizu,
T.Toda,
S.Takeda,
H.Kawachi,
and
S.Uchida
(2011).
Defective glycosylation of α-dystroglycan contributes to podocyte flattening.
|
| |
Kidney Int,
79,
311-316.
|
 |
|
|
|
|
 |
Y.Y.Lin,
R.J.White,
S.Torelli,
S.Cirak,
F.Muntoni,
and
D.L.Stemple
(2011).
Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies.
|
| |
Hum Mol Genet,
20,
1763-1775.
|
 |
|
|
|
|
 |
H.Yamashita,
M.Shang,
M.Tripathi,
J.Jourquin,
W.Georgescu,
S.Liu,
B.Weidow,
and
V.Quaranta
(2010).
Epitope mapping of function-blocking monoclonal antibody CM6 suggests a "weak" integrin binding site on the laminin-332 LG2 domain.
|
| |
J Cell Physiol,
223,
541-548.
|
 |
|
|
|
|
 |
N.Suzuki,
K.Hozumi,
S.Urushibata,
T.Yoshimura,
Y.Kikkawa,
J.D.Gumerson,
D.E.Michele,
M.P.Hoffman,
Y.Yamada,
and
M.Nomizu
(2010).
Identification of alpha-dystroglycan binding sequences in the laminin alpha2 chain LG4-5 module.
|
| |
Matrix Biol,
29,
143-151.
|
 |
|
|
|
|
 |
O.Maller,
H.Martinson,
and
P.Schedin
(2010).
Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland.
|
| |
J Mammary Gland Biol Neoplasia,
15,
301-318.
|
 |
|
|
|
|
 |
P.R.Macdonald,
A.Lustig,
M.O.Steinmetz,
and
R.A.Kammerer
(2010).
Laminin chain assembly is regulated by specific coiled-coil interactions.
|
| |
J Struct Biol,
170,
398-405.
|
 |
|
|
|
|
 |
T.Masaki,
and
K.Matsumura
(2010).
Biological role of dystroglycan in Schwann cell function and its implications in peripheral nervous system diseases.
|
| |
J Biomed Biotechnol,
2010,
740403.
|
 |
|
|
|
|
 |
X.Liu,
Z.Tang,
C.Li,
K.Yang,
G.Gan,
Z.Zhang,
J.Liu,
F.Jiang,
Q.Wang,
and
M.Liu
(2010).
Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.
|
| |
Mol Vis,
16,
454-461.
|
 |
|
|
|
|
 |
F.Carafoli,
N.J.Clout,
and
E.Hohenester
(2009).
Crystal structure of the LG1-3 region of the laminin alpha2 chain.
|
| |
J Biol Chem,
284,
22786-22792.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Sciandra,
M.Bozzi,
S.Morlacchi,
A.Galtieri,
B.Giardina,
and
A.Brancaccio
(2009).
Mutagenesis at the alpha-beta interface impairs the cleavage of the dystroglycan precursor.
|
| |
FEBS J,
276,
4933-4945.
|
 |
|
|
|
|
 |
G.Giannico,
H.Yang,
E.G.Neilson,
and
A.B.Fogo
(2009).
Dystroglycan in the diagnosis of FSGS.
|
| |
Clin J Am Soc Nephrol,
4,
1747-1753.
|
 |
|
|
|
|
 |
K.Hozumi,
N.Suzuki,
Y.Uchiyama,
F.Katagiri,
Y.Kikkawa,
and
M.Nomizu
(2009).
Chain-specific heparin-binding sequences in the laminin alpha chain LG45 modules.
|
| |
Biochemistry,
48,
5375-5381.
|
 |
|
|
|
|
 |
V.Mirouse,
C.P.Christoforou,
C.Fritsch,
D.St Johnston,
and
R.P.Ray
(2009).
Dystroglycan and perlecan provide a basal cue required for epithelial polarity during energetic stress.
|
| |
Dev Cell,
16,
83-92.
|
 |
|
|
|
|
 |
B.P.Woodall,
A.Nyström,
R.A.Iozzo,
J.A.Eble,
S.Niland,
T.Krieg,
B.Eckes,
A.Pozzi,
and
R.V.Iozzo
(2008).
Integrin {alpha}2 1 Is the Required Receptor for Endorepellin Angiostatic Activity.
|
| |
J Biol Chem,
283,
2335-2343.
|
 |
|
|
|
|
 |
C.Reissner,
M.Klose,
R.Fairless,
and
M.Missler
(2008).
Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components.
|
| |
Proc Natl Acad Sci U S A,
105,
15124-15129.
|
 |
|
|
|
|
 |
N.Bokui,
T.Otani,
K.Igarashi,
J.Kaku,
M.Oda,
T.Nagaoka,
M.Seno,
K.Tatematsu,
T.Okajima,
T.Matsuzaki,
K.Ting,
K.Tanizawa,
and
S.Kuroda
(2008).
Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation.
|
| |
FEBS Lett,
582,
365-371.
|
 |
|
|
|
|
 |
S.Sato,
Y.Omori,
K.Katoh,
M.Kondo,
M.Kanagawa,
K.Miyata,
K.Funabiki,
T.Koyasu,
N.Kajimura,
T.Miyoshi,
H.Sawai,
K.Kobayashi,
A.Tani,
T.Toda,
J.Usukura,
Y.Tano,
T.Fujikado,
and
T.Furukawa
(2008).
Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation.
|
| |
Nat Neurosci,
11,
923-931.
|
 |
|
|
|
|
 |
C.O.Sallum,
R.A.Kammerer,
and
A.T.Alexandrescu
(2007).
Thermodynamic and structural studies of carbohydrate binding by the agrin-G3 domain.
|
| |
Biochemistry,
46,
9541-9550.
|
 |
|
|
|
|
 |
D.Baux,
L.Larrieu,
C.Blanchet,
C.Hamel,
S.Ben Salah,
A.Vielle,
B.Gilbert-Dussardier,
M.Holder,
P.Calvas,
N.Philip,
P.Edery,
D.Bonneau,
M.Claustres,
S.Malcolm,
and
A.F.Roux
(2007).
Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients.
|
| |
Hum Mutat,
28,
781-789.
|
 |
|
|
|
|
 |
D.Harrison,
S.A.Hussain,
A.C.Combs,
J.M.Ervasti,
P.D.Yurchenco,
and
E.Hohenester
(2007).
Crystal structure and cell surface anchorage sites of laminin alpha1LG4-5.
|
| |
J Biol Chem,
282,
11573-11581.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Rojek,
C.F.Spiropoulou,
K.P.Campbell,
and
S.Kunz
(2007).
Old World and clade C New World arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycan's host-derived ligands.
|
| |
J Virol,
81,
5685-5695.
|
 |
|
|
|
|
 |
O.Siala,
N.Louhichi,
C.Triki,
M.Morinière,
A.Rebai,
P.Richard,
P.Guicheney,
F.Baklouti,
and
F.Fakhfakh
(2007).
Severe MDC1A congenital muscular dystrophy due to a splicing mutation in the LAMA2 gene resulting in exon skipping and significant decrease of mRNA level.
|
| |
Genet Test,
11,
199-207.
|
 |
|
|
|
|
 |
S.Schéele,
A.Nyström,
M.Durbeej,
J.F.Talts,
M.Ekblom,
and
P.Ekblom
(2007).
Laminin isoforms in development and disease.
|
| |
J Mol Med,
85,
825-836.
|
 |
|
|
|
|
 |
T.J.Mankelow,
N.Burton,
F.O.Stefansdottir,
F.A.Spring,
S.F.Parsons,
J.S.Pedersen,
C.L.Oliveira,
D.Lammie,
T.Wess,
N.Mohandas,
J.A.Chasis,
R.L.Brady,
and
D.J.Anstee
(2007).
The Laminin 511/521-binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3.
|
| |
Blood,
110,
3398-3406.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.M.Leppänen,
H.Tossavainen,
P.Permi,
L.Lehtiö,
G.Rönnholm,
A.Goldman,
I.Kilpelaïnen,
and
T.Pihlajamaa
(2007).
Crystal structure of the N-terminal NC4 domain of collagen IX, a zinc binding member of the laminin-neurexin-sex hormone binding globulin (LNS) domain family.
|
| |
J Biol Chem,
282,
23219-23230.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.S.Annis,
J.E.Murphy-Ullrich,
and
D.F.Mosher
(2006).
Function-blocking antithrombospondin-1 monoclonal antibodies.
|
| |
J Thromb Haemost,
4,
459-468.
|
 |
|
|
|
|
 |
E.R.Graf,
Y.Kang,
A.M.Hauner,
and
A.M.Craig
(2006).
Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain.
|
| |
J Neurosci,
26,
4256-4265.
|
 |
|
|
|
|
 |
K.Hozumi,
N.Suzuki,
P.K.Nielsen,
M.Nomizu,
and
Y.Yamada
(2006).
Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1.
|
| |
J Biol Chem,
281,
32929-32940.
|
 |
|
|
|
|
 |
M.Schneider,
A.A.Khalil,
J.Poulton,
C.Castillejo-Lopez,
D.Egger-Adam,
A.Wodarz,
W.M.Deng,
and
S.Baumgartner
(2006).
Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization.
|
| |
Development,
133,
3805-3815.
|
 |
|
|
|
|
 |
P.Scotton,
D.Bleckmann,
M.Stebler,
F.Sciandra,
A.Brancaccio,
T.Meier,
J.Stetefeld,
and
M.A.Ruegg
(2006).
Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin.
|
| |
J Biol Chem,
281,
36835-36845.
|
 |
|
|
|
|
 |
X.Wei,
J.Zou,
M.Takechi,
S.Kawamura,
and
L.Li
(2006).
Nok plays an essential role in maintaining the integrity of the outer nuclear layer in the zebrafish retina.
|
| |
Exp Eye Res,
83,
31-44.
|
 |
|
|
|
|
 |
A.Chédotal,
G.Kerjan,
and
C.Moreau-Fauvarque
(2005).
The brain within the tumor: new roles for axon guidance molecules in cancers.
|
| |
Cell Death Differ,
12,
1044-1056.
|
 |
|
|
|
|
 |
A.Fallahi,
B.Kroll,
L.R.Warner,
R.J.Oxford,
K.M.Irwin,
L.M.Mercer,
S.E.Shadle,
and
J.T.Oxford
(2005).
Structural model of the amino propeptide of collagen XI alpha1 chain with similarity to the LNS domains.
|
| |
Protein Sci,
14,
1526-1537.
|
 |
|
|
|
|
 |
C.Paret,
M.Bourouba,
A.Beer,
K.Miyazaki,
M.Schnölzer,
S.Fiedler,
and
M.Zöller
(2005).
Ly6 family member C4.4A binds laminins 1 and 5, associates with galectin-3 and supports cell migration.
|
| |
Int J Cancer,
115,
724-733.
|
 |
|
|
|
|
 |
E.Méhes,
A.Czirók,
B.Hegedüs,
B.Szabó,
T.Vicsek,
J.Satz,
K.Campbell,
and
V.Jancsik
(2005).
Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: combined velocity and directionality analysis.
|
| |
Glia,
49,
492-500.
|
 |
|
|
|
|
 |
E.M.Gonzalez,
C.C.Reed,
G.Bix,
J.Fu,
Y.Zhang,
B.Gopalakrishnan,
D.S.Greenspan,
and
R.V.Iozzo
(2005).
BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan.
|
| |
J Biol Chem,
280,
7080-7087.
|
 |
|
|
|
|
 |
J.Stetefeld,
and
M.A.Ruegg
(2005).
Structural and functional diversity generated by alternative mRNA splicing.
|
| |
Trends Biochem Sci,
30,
515-521.
|
 |
|
|
|
|
 |
N.Suzuki,
F.Yokoyama,
and
M.Nomizu
(2005).
Functional sites in the laminin alpha chains.
|
| |
Connect Tissue Res,
46,
142-152.
|
 |
|
|
|
|
 |
R.V.Iozzo
(2005).
Basement membrane proteoglycans: from cellar to ceiling.
|
| |
Nat Rev Mol Cell Biol,
6,
646-656.
|
 |
|
|
|
|
 |
S.P.Smirnov,
P.Barzaghi,
K.K.McKee,
M.A.Ruegg,
and
P.D.Yurchenco
(2005).
Conjugation of LG domains of agrins and perlecan to polymerizing laminin-2 promotes acetylcholine receptor clustering.
|
| |
J Biol Chem,
280,
41449-41457.
|
 |
|
|
|
|
 |
A.Hogan,
Y.Yakubchyk,
J.Chabot,
C.Obagi,
E.Daher,
K.Maekawa,
and
S.H.Gee
(2004).
The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization.
|
| |
J Biol Chem,
279,
53717-53724.
|
 |
|
|
|
|
 |
D.Bozic,
F.Sciandra,
D.Lamba,
and
A.Brancaccio
(2004).
The structure of the N-terminal region of murine skeletal muscle alpha-dystroglycan discloses a modular architecture.
|
| |
J Biol Chem,
279,
44812-44816.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ido,
K.Harada,
S.Futaki,
Y.Hayashi,
R.Nishiuchi,
Y.Natsuka,
S.Li,
Y.Wada,
A.C.Combs,
J.M.Ervasti,
and
K.Sekiguchi
(2004).
Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10.
|
| |
J Biol Chem,
279,
10946-10954.
|
 |
|
|
|
|
 |
J.Stetefeld,
A.T.Alexandrescu,
M.W.Maciejewski,
M.Jenny,
K.Rathgeb-Szabo,
T.Schulthess,
R.Landwehr,
S.Frank,
M.A.Ruegg,
and
R.A.Kammerer
(2004).
Modulation of agrin function by alternative splicing and Ca2+ binding.
|
| |
Structure,
12,
503-515.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Künneken,
G.Pohlentz,
A.Schmidt-Hederich,
U.Odenthal,
N.Smyth,
J.Peter-Katalinic,
P.Bruckner,
and
J.A.Eble
(2004).
Recombinant human laminin-5 domains. Effects of heterotrimerization, proteolytic processing, and N-glycosylation on alpha3beta1 integrin binding.
|
| |
J Biol Chem,
279,
5184-5193.
|
 |
|
|
|
|
 |
M.Kanagawa,
F.Saito,
S.Kunz,
T.Yoshida-Moriguchi,
R.Barresi,
Y.M.Kobayashi,
J.Muschler,
J.P.Dumanski,
D.E.Michele,
M.B.Oldstone,
and
K.P.Campbell
(2004).
Molecular recognition by LARGE is essential for expression of functional dystroglycan.
|
| |
Cell,
117,
953-964.
|
 |
|
|
|
|
 |
T.Sasaki,
R.Fässler,
and
E.Hohenester
(2004).
Laminin: the crux of basement membrane assembly.
|
| |
J Cell Biol,
164,
959-963.
|
 |
|
|
|
|
 |
C.N.Tseng,
L.Zhang,
M.Cascio,
and
Z.Z.Wang
(2003).
Calcium plays a critical role in determining the acetylcholine receptor-clustering activities of alternatively spliced isoforms of Agrin.
|
| |
J Biol Chem,
278,
17236-17245.
|
 |
|
|
|
|
 |
J.C.Myers,
D.Li,
P.S.Amenta,
C.C.Clark,
C.Nagaswami,
and
J.W.Weisel
(2003).
Type XIX collagen purified from human umbilical cord is characterized by multiple sharp kinks delineating collagenous subdomains and by intermolecular aggregates via globular, disulfide-linked, and heparin-binding amino termini.
|
| |
J Biol Chem,
278,
32047-32057.
|
 |
|
|
|
|
 |
M.Ferletta,
Y.Kikkawa,
H.Yu,
J.F.Talts,
M.Durbeej,
A.Sonnenberg,
R.Timpl,
K.P.Campbell,
P.Ekblom,
and
E.Genersch
(2003).
Opposing roles of integrin alpha6Abeta1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation.
|
| |
Mol Biol Cell,
14,
2088-2103.
|
 |
|
|
|
|
 |
N.Suzuki,
H.Nakatsuka,
M.Mochizuki,
N.Nishi,
Y.Kadoya,
A.Utani,
S.Oishi,
N.Fujii,
H.K.Kleinman,
and
M.Nomizu
(2003).
Biological activities of homologous loop regions in the laminin alpha chain G domains.
|
| |
J Biol Chem,
278,
45697-45705.
|
 |
|
|
|
|
 |
N.Suzuki,
N.Ichikawa,
S.Kasai,
M.Yamada,
N.Nishi,
H.Morioka,
H.Yamashita,
Y.Kitagawa,
A.Utani,
M.P.Hoffman,
and
M.Nomizu
(2003).
Syndecan binding sites in the laminin alpha1 chain G domain.
|
| |
Biochemistry,
42,
12625-12633.
|
 |
|
|
|
|
 |
Y.Kariya,
Y.Tsubota,
T.Hirosaki,
H.Mizushima,
W.Puzon-McLaughlin,
Y.Takada,
and
K.Miyazaki
(2003).
Differential regulation of cellular adhesion and migration by recombinant laminin-5 forms with partial deletion or mutation within the G3 domain of alpha3 chain.
|
| |
J Cell Biochem,
88,
506-520.
|
 |
|
|
|
|
 |
H.J.Spence,
Y.J.Chen,
and
S.J.Winder
(2002).
Muscular dystrophies, the cytoskeleton and cell adhesion.
|
| |
Bioessays,
24,
542-552.
|
 |
|
|
|
|
 |
T.K.Giri,
S.Linse,
P.García de Frutos,
T.Yamazaki,
B.O.Villoutreix,
and
B.Dahlbäck
(2002).
Structural requirements of anticoagulant protein S for its binding to the complement regulator C4b-binding protein.
|
| |
J Biol Chem,
277,
15099-15106.
|
 |
|
|
|
|
 |
T.Sasaki,
P.G.Knyazev,
Y.Cheburkin,
W.Göhring,
D.Tisi,
A.Ullrich,
R.Timpl,
and
E.Hohenester
(2002).
Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains.
|
| |
J Biol Chem,
277,
44164-44170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Marillat,
O.Cases,
K.T.Nguyen-Ba-Charvet,
M.Tessier-Lavigne,
C.Sotelo,
and
A.Chédotal
(2002).
Spatiotemporal expression patterns of slit and robo genes in the rat brain.
|
| |
J Comp Neurol,
442,
130-155.
|
 |
|
|
|
|
 |
A.Rambukkana
(2001).
Molecular basis for the peripheral nerve predilection of Mycobacterium leprae.
|
| |
Curr Opin Microbiol,
4,
21-27.
|
 |
|
|
|
|
 |
B.O.Villoutreix,
B.Dahlbäck,
D.Borgel,
S.Gandrille,
and
Y.A.Muller
(2001).
Three-dimensional model of the SHBG-like region of anticoagulant protein S: new structure-function insights.
|
| |
Proteins,
43,
203-216.
|
 |
|
|
|
|
 |
G.Rudenko,
E.Hohenester,
and
Y.A.Muller
(2001).
LG/LNS domains: multiple functions -- one business end?
|
| |
Trends Biochem Sci,
26,
363-368.
|
 |
|
|
|
|
 |
M.Durbeej,
J.F.Talts,
M.D.Henry,
P.D.Yurchenco,
K.P.Campbell,
and
P.Ekblom
(2001).
Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro.
|
| |
Differentiation,
69,
121-134.
|
 |
|
|
|
|
 |
S.J.Winder
(2001).
The complexities of dystroglycan.
|
| |
Trends Biochem Sci,
26,
118-124.
|
 |
|
|
|
|
 |
S.Kunz,
N.Sevilla,
D.B.McGavern,
K.P.Campbell,
and
M.B.Oldstone
(2001).
Molecular analysis of the interaction of LCMV with its cellular receptor [alpha]-dystroglycan.
|
| |
J Cell Biol,
155,
301-310.
|
 |
|
|
|
|
 |
S.Sugita,
F.Saito,
J.Tang,
J.Satz,
K.Campbell,
and
T.C.Südhof
(2001).
A stoichiometric complex of neurexins and dystroglycan in brain.
|
| |
J Cell Biol,
154,
435-445.
|
 |
|
|
|
|
 |
B.L.Patton
(2000).
Laminins of the neuromuscular system.
|
| |
Microsc Res Tech,
51,
247-261.
|
 |
|
|
|
|
 |
D.Tisi,
J.F.Talts,
R.Timpl,
and
E.Hohenester
(2000).
Structure of the C-terminal laminin G-like domain pair of the laminin alpha2 chain harbouring binding sites for alpha-dystroglycan and heparin.
|
| |
EMBO J,
19,
1432-1440.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Colognato,
and
P.D.Yurchenco
(2000).
Form and function: the laminin family of heterotrimers.
|
| |
Dev Dyn,
218,
213-234.
|
 |
|
|
|
|
 |
I.Grishkovskaya,
G.V.Avvakumov,
G.Sklenar,
D.Dales,
G.L.Hammond,
and
Y.A.Muller
(2000).
Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain.
|
| |
EMBO J,
19,
504-512.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.C.Deller,
and
E.Yvonne Jones
(2000).
Cell surface receptors.
|
| |
Curr Opin Struct Biol,
10,
213-219.
|
 |
|
|
|
|
 |
M.V.Friedrich,
M.Schneider,
R.Timpl,
and
S.Baumgartner
(2000).
Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression.
|
| |
Eur J Biochem,
267,
3149-3159.
|
 |
|
|
|
|
 |
P.K.Nielsen,
Y.S.Gho,
M.P.Hoffman,
H.Watanabe,
M.Makino,
M.Nomizu,
and
Y.Yamada
(2000).
Identification of a major heparin and cell binding site in the LG4 module of the laminin alpha 5 chain.
|
| |
J Biol Chem,
275,
14517-14523.
|
 |
|
|
|
|
 |
P.Tunggal,
N.Smyth,
M.Paulsson,
and
M.C.Ott
(2000).
Laminins: structure and genetic regulation.
|
| |
Microsc Res Tech,
51,
214-227.
|
 |
|
|
|
|
 |
Q.Wu,
and
T.Maniatis
(2000).
Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes.
|
| |
Proc Natl Acad Sci U S A,
97,
3124-3129.
|
 |
|
|
|
|
 |
V.Ng,
G.Zanazzi,
R.Timpl,
J.F.Talts,
J.L.Salzer,
P.J.Brennan,
and
A.Rambukkana
(2000).
Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae.
|
| |
Cell,
103,
511-524.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |