spacer
spacer

PDBsum entry 1qqe

Go to PDB code: 
protein links
Protein transport PDB id
1qqe

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
281 a.a. *
Waters ×4
* Residue conservation analysis
PDB id:
1qqe
Name: Protein transport
Title: Crystal structure of the vesicular transport protein sec17
Structure: Vesicular transport protein sec17. Chain: a. Engineered: yes. Mutation: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.90Å     R-factor:   0.260     R-free:   0.283
Authors: L.M.Rice,A.T.Brunger
Key ref:
L.M.Rice and A.T.Brunger (1999). Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Mol Cell, 4, 85-95. PubMed id: 10445030 DOI: 10.1016/S1097-2765(00)80190-2
Date:
04-Jun-99     Release date:   08-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P32602  (SEC17_YEAST) -  Alpha-soluble NSF attachment protein from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
292 a.a.
281 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S1097-2765(00)80190-2 Mol Cell 4:85-95 (1999)
PubMed id: 10445030  
 
 
Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly.
L.M.Rice, A.T.Brunger.
 
  ABSTRACT  
 
SNAP proteins play an essential role in membrane trafficking in eukaryotic cells. They activate and recycle SNARE proteins by serving as adaptors between SNAREs and the cytosolic chaperone NSF. We have determined the crystal structure of Sec17, the yeast homolog of alpha-SNAP, to 2.9 A resolution. Sec17 is composed of an N-terminal twisted sheet of alpha-helical hairpins and a C-terminal alpha-helical bundle. The N-terminal sheet has local similarity to the tetratricopeptide repeats from protein phosphatase 5 but has a different overall twist. Sec17 also shares structural features with HEAT and clathrin heavy chain repeats. Possible models of SNAP:SNARE binding suggest that SNAPs may function as lever arms, transmitting forces generated by conformational changes in NSF/Sec18 to drive disassembly of SNARE complexes.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Experimental Electron Density Map after Density ModificationDensity-modified experimental electron density for α helices α3 and α4 and the connecting loop contoured at 1.4 σ. The final, refined model is shown using a ball-and-stick representation. The α helices, loop, and most side chains are clearly visible in the initial map. The buried residues Gly-57, Phe-60, Ala-83, and Phe-87, which are conserved in the representative SNAP sequences (Figure 3A), are depicted in red.
Figure 2.
Figure 2. Overall Structure of Sec17Two ribbon drawings of Sec17 related by a 180° rotation around the long axis of the protein. The nine N-terminal α helices form a twisted sheet that gives rise to two faces and two ridges. The five C-terminal α helices form a more globular bundle, which is asymmetrically disposed with respect to the N-terminal sheet, creating a significant cleft on one face of the molecule. Residues colored red and yellow correspond, respectively, to inhibitory and noninhibitory peptides from an earlier study ([15]).
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (1999, 4, 85-95) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22307055 L.F.Chang, S.Chen, C.C.Liu, X.Pan, J.Jiang, X.C.Bai, X.Xie, H.W.Wang, and S.F.Sui (2012).
Structural characterization of full-length NSF and 20S particles.
  Nat Struct Mol Biol, 19, 268-275.  
20220147 S.D'Arcy, O.R.Davies, T.L.Blundell, and V.M.Bolanos-Garcia (2010).
Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition.
  J Biol Chem, 285, 14764-14776.
PDB code: 2wvi
19414611 M.L.Schwartz, and A.J.Merz (2009).
Capture and release of partially zipped trans-SNARE complexes on intact organelles.
  J Cell Biol, 185, 535-549.  
19762473 U.Winter, X.Chen, and D.Fasshauer (2009).
A conserved membrane attachment site in alpha-SNAP facilitates N-ethylmaleimide-sensitive factor (NSF)-driven SNARE complex disassembly.
  J Biol Chem, 284, 31817-31826.  
20005805 Y.Ren, C.K.Yip, A.Tripathi, D.Huie, P.D.Jeffrey, T.Walz, and F.M.Hughson (2009).
A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1.
  Cell, 139, 1119-1129.
PDB code: 3k8p
17634982 E.Bitto, C.A.Bingman, D.A.Kondrashov, J.G.McCoy, R.M.Bannen, G.E.Wesenberg, and G.N.Phillips (2008).
Structure and dynamics of gamma-SNAP: insight into flexibility of proteins from the SNAP family.
  Proteins, 70, 93.
PDB code: 2ifu
18596817 W.Wickner, and R.Schekman (2008).
Membrane fusion.
  Nat Struct Mol Biol, 15, 658-664.  
18618939 W.Wickner, and R.Schekman (2008).
Membrane fusion.
  Nat Struct Mol Biol, 15, 658-664.  
17397838 C.Zhao, J.T.Slevin, and S.W.Whiteheart (2007).
Cellular functions of NSF: not just SNAPs and SNAREs.
  FEBS Lett, 581, 2140-2149.  
17097678 M.Sommerhalter, Y.Zhang, and A.C.Rosenzweig (2007).
Solution structure of the COMMD1 N-terminal domain.
  J Mol Biol, 365, 715-721.
PDB code: 2h2m
17386263 Y.Bai, T.C.Auperin, C.Y.Chou, G.G.Chang, J.L.Manley, and L.Tong (2007).
Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors.
  Mol Cell, 25, 863-875.
PDB codes: 2ond 2ooe
16522802 A.C.Hausrath, and A.Goriely (2006).
Repeat protein architectures predicted by a continuum representation of fold space.
  Protein Sci, 15, 753-760.  
16981829 A.V.Andreeva, M.A.Kutuzov, and T.A.Voyno-Yasenetskaya (2006).
A ubiquitous membrane fusion protein alpha SNAP: a potential therapeutic target for cancer, diabetes and neurological disorders?
  Expert Opin Ther Targets, 10, 723-733.  
16522630 J.M.Lauer, S.Dalal, K.E.Marz, M.L.Nonet, and P.I.Hanson (2006).
SNARE complex zero layer residues are not critical for N-ethylmaleimide-sensitive factor-mediated disassembly.
  J Biol Chem, 281, 14823-14832.  
15980433 A.V.Andreeva, M.A.Kutuzov, R.Vaiskunaite, J.Profirovic, T.E.Meigs, S.Predescu, A.B.Malik, and T.Voyno-Yasenetskaya (2005).
G alpha12 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function.
  J Biol Chem, 280, 30376-30383.  
16314568 J.Perry, N.Kleckner, and G.V.Börner (2005).
Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling.
  Proc Natl Acad Sci U S A, 102, 17594-17599.  
14755058 H.K.Hong, A.Chakravarti, and J.S.Takahashi (2004).
The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice.
  Proc Natl Acad Sci U S A, 101, 1748-1753.  
14988733 I.Dreveny, H.Kondo, K.Uchiyama, A.Shaw, X.Zhang, and P.S.Freemont (2004).
Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47.
  EMBO J, 23, 1030-1039.
PDB code: 1s3s
14705031 J.A.Dohm, S.J.Lee, J.M.Hardwick, R.B.Hill, and A.G.Gittis (2004).
Cytosolic domain of the human mitochondrial fission protein fis1 adopts a TPR fold.
  Proteins, 54, 153-156.
PDB code: 1nzn
15086786 S.Martinez-Arca, S.Arold, R.Rudge, F.Laroche, and T.Galli (2004).
A mutant impaired in SNARE complex dissociation identifies the plasma membrane as first target of synaptobrevin 2.
  Traffic, 5, 371-382.  
14757810 T.H.Söllner (2004).
A mutation in the general membrane trafficking machinery and hydrocephaly.
  Proc Natl Acad Sci U S A, 101, 1431-1432.  
15180986 Z.Wei, P.Zhang, Z.Zhou, Z.Cheng, M.Wan, and W.Gong (2004).
Crystal structure of human eIF3k, the first structure of eIF3 subunits.
  J Biol Chem, 279, 34983-34990.
PDB code: 1rz4
14687415 F.D.Ciccarelli, E.Izaurralde, and P.Bork (2003).
The PAM domain, a multi-protein complex-associated module with an all-alpha-helix fold.
  BMC Bioinformatics, 4, 64.  
12941689 J.Furst, R.B.Sutton, J.Chen, A.T.Brunger, and N.Grigorieff (2003).
Electron cryomicroscopy structure of N-ethyl maleimide sensitive factor at 11 A resolution.
  EMBO J, 22, 4365-4374.  
12730228 K.E.Marz, J.M.Lauer, and P.I.Hanson (2003).
Defining the SNARE complex binding surface of alpha-SNAP: implications for SNARE complex disassembly.
  J Biol Chem, 278, 27000-27008.  
14557549 K.J.Walters, P.J.Lech, A.M.Goh, Q.Wang, and P.M.Howley (2003).
DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a.
  Proc Natl Acad Sci U S A, 100, 12694-12699.
PDB codes: 1oqy 1qze
12554740 K.Tani, M.Shibata, K.Kawase, H.Kawashima, K.Hatsuzawa, M.Nagahama, and M.Tagaya (2003).
Mapping of functional domains of gamma-SNAP.
  J Biol Chem, 278, 13531-13538.  
11931741 J.G.Hanley, L.Khatri, P.I.Hanson, and E.B.Ziff (2002).
NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex.
  Neuron, 34, 53-67.  
11687574 M.Velten, N.Gomez-Vrielynck, A.Chaffotte, and M.M.Ladjimi (2002).
Domain structure of the HSC70 cochaperone, HIP.
  J Biol Chem, 277, 259-266.  
11684692 R.D.Moir, K.V.Puglia, and I.M.Willis (2002).
Autoinhibition of TFIIIB70 binding by the tetratricopeptide repeat-containing subunit of TFIIIC.
  J Biol Chem, 277, 694-701.  
11340056 A.T.Brunger (2001).
Structure of proteins involved in synaptic vesicle fusion in neurons.
  Annu Rev Biophys Biomol Struct, 30, 157-171.  
11297924 A.T.Brunger (2001).
Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion.
  Curr Opin Struct Biol, 11, 163-173.  
11709169 C.Steegborn, O.Danot, R.Huber, and T.Clausen (2001).
Crystal structure of transcription factor MalT domain III: a novel helix repeat fold implicated in regulated oligomerization.
  Structure, 9, 1051-1060.
PDB code: 1hz4
11536358 F.Bruckert, T.Casavant, and M.Satre (2001).
Aromatic di-alanine repeats (AdAR) are structural motifs characteristic of the soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) family.
  Proteins, 45, 40-46.  
11545737 L.Fairall, L.Chapman, H.Moss, T.de Lange, and D.Rhodes (2001).
Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2.
  Mol Cell, 8, 351-361.
PDB codes: 1h6o 1h6p
11483507 M.Kato, and W.Wickner (2001).
Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion.
  EMBO J, 20, 4035-4040.  
10851178 A.T.Brunger (2000).
Structural insights into the molecular mechanism of Ca(2+)-dependent exocytosis.
  Curr Opin Neurobiol, 10, 293-302.  
11050437 B.Kobe, and A.V.Kajava (2000).
When protein folding is simplified to protein coiling: the continuum of solenoid protein structures.
  Trends Biochem Sci, 25, 509-515.  
11208133 J.A.Ybe, D.E.Wakeham, F.M.Brodsky, and P.K.Hwang (2000).
Molecular structures of proteins involved in vesicle fusion.
  Traffic, 1, 474-479.  
11114503 K.M.Misura, A.P.May, and W.I.Weis (2000).
Protein-protein interactions in intracellular membrane fusion.
  Curr Opin Struct Biol, 10, 662-671.  
11053839 L.M.Rice, T.N.Earnest, and A.T.Brunger (2000).
Single-wavelength anomalous diffraction phasing revisited.
  Acta Crystallogr D Biol Crystallogr, 56, 1413-1420.  
10893253 R.D.Vale (2000).
AAA proteins. Lords of the ring.
  J Cell Biol, 150, F13-F19.  
10721992 Y.Abe, T.Shodai, T.Muto, K.Mihara, H.Torii, S.Nishikawa, T.Endo, and D.Kohda (2000).
Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20.
  Cell, 100, 551-560.
PDB code: 1om2
10445031 R.C.Yu, R.Jahn, and A.T.Brunger (1999).
NSF N-terminal domain crystal structure: models of NSF function.
  Mol Cell, 4, 97.
PDB code: 1qcs
10611286 S.M.Babor, and D.Fass (1999).
Crystal structure of the Sec18p N-terminal domain.
  Proc Natl Acad Sci U S A, 96, 14759-14764.
PDB code: 1cr5
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer