|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C:
E.C.3.6.1.23
- dUTP diphosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
dUTP + H2O = dUMP + diphosphate + H+
|
 |
 |
 |
 |
 |
dUTP
Bound ligand (Het Group name = )
matches with 85.71% similarity
|
+
|
H2O
|
=
|
dUMP
|
+
|
diphosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Structure
4:1077-1092
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits.
|
|
C.D.Mol,
J.M.Harris,
E.M.McIntosh,
J.A.Tainer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND. The essential enzyme dUTP pyrophosphatase (dUTPase) is exquisitely
specific for dUTP and is critical for the fidelity of DNA replication and
repair. dUTPase hydrolyzes dUTP to dUMP and pyrophosphate, simultaneously
reducing dUTP levels and providing the dUMP for dTTP biosynthesis. A high
cellular dTTP: dUTP ratio is essential to avoid uracil incorporation into DNA,
which would lead to strand breaks and cell death. We report the first detailed
atomic-resolution structure of a eukaryotic dUTPase, human dUTPase, and
complexes with the uracil-containing deoxyribonucleotides, dUMP, dUDP and dUTP.
RESULTS. The crystal structure reveals that each subunit of the dUTPase trimer
folds into an eight-stranded jelly-roll beta barrel, with the C-terminal beta
strands interchanged among the subunits. The structure is similar to that of the
E. coli enzyme, despite low sequence homology between the two enzymes. The
nucleotide complexes reveal a simple and elegant way for a beta hairpin to
recognize specific nucleic acids: uracil is inserted into a distorted
antiparallel beta hairpin and hydrogen bonds entirely to main-chain atoms. This
interaction mimics DNA base pairing, selecting uracil over cytosine and
sterically precluding thymine and ribose binding. Residues from the second
subunit interact with the phosphate groups and a glycine-rich C-terminal tail of
the third subunit caps the substrate-bound active site, causing total
complementary enclosure of substrate. To our knowledge, this is the first
documented instance of all three subunits of a trimeric enzyme supplying
residues that are critical to enzyme function and catalysis. CONCLUSIONS. The
dUTPase nucleotide-binding sites incorporate some features of other
nucleotide-binding proteins and protein kinases, but seem distinct in sequence
and architecture. The novel nucleic acid base recognition motif appears ancient;
higher order structures, such as the ribosome, may have evolved from a motif of
this kind. These uracil-beta-hairpin interactions are an obvious way for
peptides to become early coenzymes in an RNA world, providing a plausible link
to the protein-DNA world. Within the beta hairpin, there is a tyrosine corner
motif that normally specifies beta-arch connections; this tyrosine motif was
apparently recruited to discriminate against ribonucleotides, more recently than
the evolution of the beta hairpin itself.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
Figure 8.
Figure 8. Schematic of dUTPase-substrate interactions
showing the structural basis for the exquisite specificity for
dUTP that requires all three subunits. Hydrogen bonds (<3.4 å )
are shown (dashed lines) with the donor-acceptor atom distance
beneath the protein atom label. Hydrophobic interactions (wavy
lines) are shown only for the key residues Tyr82, which packs
against the deoxyribose, and Phe135, which stacks above the
bound uracil base. Uracil and deoxyribose are primarily
recognized by one subunit (gold rectangles), phosphate groups by
the adjacent subunit (purple rectangles), whereas the bound
substrate is capped by residues from the C-terminal tail of a
third subunit (blue rectangles).
|
 |
|
|
|
| |
The above figure is
reprinted
by permission from Cell Press:
Structure
(1996,
4,
1077-1092)
copyright 1996.
|
|
| |
Figure was
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.Sharbeen,
A.J.Cook,
K.K.Lau,
J.Raftery,
C.W.Yee,
and
C.J.Jolly
(2010).
Incorporation of dUTP does not mediate mutation of A:T base pairs in Ig genes in vivo.
|
| |
Nucleic Acids Res,
38,
8120-8130.
|
 |
|
|
|
|
 |
G.W.Han,
M.A.Elsliger,
T.O.Yeates,
Q.Xu,
A.G.Murzin,
S.S.Krishna,
L.Jaroszewski,
P.Abdubek,
T.Astakhova,
H.L.Axelrod,
D.Carlton,
C.Chen,
H.J.Chiu,
T.Clayton,
D.Das,
M.C.Deller,
L.Duan,
D.Ernst,
J.Feuerhelm,
J.C.Grant,
A.Grzechnik,
K.K.Jin,
H.A.Johnson,
H.E.Klock,
M.W.Knuth,
P.Kozbial,
A.Kumar,
W.W.Lam,
D.Marciano,
D.McMullan,
M.D.Miller,
A.T.Morse,
E.Nigoghossian,
L.Okach,
R.Reyes,
C.L.Rife,
N.Sefcovic,
H.J.Tien,
C.B.Trame,
H.van den Bedem,
D.Weekes,
K.O.Hodgson,
J.Wooley,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
and
I.A.Wilson
(2010).
Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
1237-1244.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Pecsi,
I.Leveles,
V.Harmat,
B.G.Vertessy,
and
J.Toth
(2010).
Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase.
|
| |
Nucleic Acids Res,
38,
7179-7186.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.García-Nafría,
L.Burchell,
M.Takezawa,
N.J.Rzechorzek,
M.J.Fogg,
and
K.S.Wilson
(2010).
The structure of the genomic Bacillus subtilis dUTPase: novel features in the Phe-lid.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
953-961.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.G.Vértessy,
and
J.Tóth
(2009).
Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases.
|
| |
Acc Chem Res,
42,
97.
|
 |
|
|
|
|
 |
G.L.Li,
J.Wang,
L.F.Li,
and
X.D.Su
(2009).
Crystallization and preliminary X-ray analysis of three dUTPases from Gram-positive bacteria.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
65,
339-342.
|
 |
|
|
|
|
 |
K.Homma,
and
H.Moriyama
(2009).
Crystallization and crystal-packing studies of Chlorella virus deoxyuridine triphosphatase.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
65,
1030-1034.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Freeman,
M.Buisson,
N.Tarbouriech,
A.Van der Heyden,
P.Labbé,
and
W.P.Burmeister
(2009).
The flexible motif V of Epstein-Barr virus deoxyuridine 5'-triphosphate pyrophosphatase is essential for catalysis.
|
| |
J Biol Chem,
284,
25280-25289.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Wilson,
W.Fazzone,
M.J.LaBonte,
H.J.Lenz,
and
R.D.Ladner
(2009).
Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage.
|
| |
Nucleic Acids Res,
37,
78-95.
|
 |
|
|
|
|
 |
J.Kovári,
O.Barabás,
B.Varga,
A.Békési,
F.Tölgyesi,
J.Fidy,
J.Nagy,
and
B.G.Vértessy
(2008).
Methylene substitution at the alpha-beta bridging position within the phosphate chain of dUDP profoundly perturbs ligand accommodation into the dUTPase active site.
|
| |
Proteins,
71,
308-319.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Wilson,
W.Fazzone,
M.J.LaBonte,
J.Deng,
N.Neamati,
and
R.D.Ladner
(2008).
Novel opportunities for thymidylate metabolism as a therapeutic target.
|
| |
Mol Cancer Ther,
7,
3029-3037.
|
 |
|
|
|
|
 |
R.T.Javier
(2008).
Cell polarity proteins: common targets for tumorigenic human viruses.
|
| |
Oncogene,
27,
7031-7046.
|
 |
|
|
|
|
 |
S.H.Chung,
R.S.Weiss,
K.K.Frese,
B.V.Prasad,
and
R.T.Javier
(2008).
Functionally distinct monomers and trimers produced by a viral oncoprotein.
|
| |
Oncogene,
27,
1412-1420.
|
 |
|
|
|
|
 |
A.Samal,
N.Schormann,
W.J.Cook,
L.J.DeLucas,
and
D.Chattopadhyay
(2007).
Structures of vaccinia virus dUTPase and its nucleotide complexes.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
571-580.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Tóth,
B.Varga,
M.Kovács,
A.Málnási-Csizmadia,
and
B.G.Vértessy
(2007).
Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme.
|
| |
J Biol Chem,
282,
33572-33582.
|
 |
|
|
|
|
 |
M.Bajaj,
and
H.Moriyama
(2007).
Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
409-411.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.H.Chung,
K.K.Frese,
R.S.Weiss,
B.V.Prasad,
and
R.T.Javier
(2007).
A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles.
|
| |
J Virol,
81,
4787-4797.
|
 |
|
|
|
|
 |
V.Németh-Pongrácz,
O.Barabás,
M.Fuxreiter,
I.Simon,
I.Pichová,
M.Rumlová,
H.Zábranská,
D.Svergun,
M.Petoukhov,
V.Harmat,
E.Klement,
E.Hunyadi-Gulyás,
K.F.Medzihradszky,
E.Kónya,
and
B.G.Vértessy
(2007).
Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins.
|
| |
Nucleic Acids Res,
35,
495-505.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Cho,
H.S.Lee,
Y.J.Kim,
S.G.Kang,
S.J.Kim,
and
J.H.Lee
(2007).
Characterization of a dUTPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in polymerase chain reaction amplification.
|
| |
Mar Biotechnol (NY),
9,
450-458.
|
 |
|
|
|
|
 |
A.J.Davison,
and
N.D.Stow
(2005).
New genes from old: redeployment of dUTPase by herpesviruses.
|
| |
J Virol,
79,
12880-12892.
|
 |
|
|
|
|
 |
E.Johansson,
M.Fanø,
J.H.Bynck,
J.Neuhard,
S.Larsen,
B.W.Sigurskjold,
U.Christensen,
and
M.Willemoës
(2005).
Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes.
|
| |
J Biol Chem,
280,
3051-3059.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.L.Whittingham,
I.Leal,
C.Nguyen,
G.Kasinathan,
E.Bell,
A.F.Jones,
C.Berry,
A.Benito,
J.P.Turkenburg,
E.J.Dodson,
L.M.Ruiz Perez,
A.J.Wilkinson,
N.G.Johansson,
R.Brun,
I.H.Gilbert,
D.Gonzalez Pacanowska,
and
K.S.Wilson
(2005).
dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors.
|
| |
Structure,
13,
329-338.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Tarbouriech,
M.Buisson,
J.M.Seigneurin,
S.Cusack,
and
W.P.Burmeister
(2005).
The monomeric dUTPase from Epstein-Barr virus mimics trimeric dUTPases.
|
| |
Structure,
13,
1299-1310.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zhang,
H.Moriyama,
K.Homma,
and
J.L.Van Etten
(2005).
Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima.
|
| |
J Virol,
79,
9945-9953.
|
 |
|
|
|
|
 |
J.Abe,
T.Kubo,
Y.Takagi,
T.Saito,
K.Miura,
H.Fukuzawa,
and
Y.Matsuda
(2004).
The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii.
|
| |
Curr Genet,
46,
304-315.
|
 |
|
|
|
|
 |
J.Kovári,
O.Barabás,
E.Takács,
A.Békési,
Z.Dubrovay,
V.Pongrácz,
I.Zagyva,
T.Imre,
P.Szabó,
and
B.G.Vértessy
(2004).
Altered active site flexibility and a structural metal-binding site in eukaryotic dUTPase: kinetic characterization, folding, and crystallographic studies of the homotrimeric Drosophila enzyme.
|
| |
J Biol Chem,
279,
17932-17944.
|
 |
|
|
|
|
 |
L.M.Iyer,
and
L.Aravind
(2004).
The emergence of catalytic and structural diversity within the beta-clip fold.
|
| |
Proteins,
55,
977-991.
|
 |
|
|
|
|
 |
M.Harkiolaki,
E.J.Dodson,
V.Bernier-Villamor,
J.P.Turkenburg,
D.González-Pacanowska,
and
K.S.Wilson
(2004).
The crystal structure of Trypanosoma cruzi dUTPase reveals a novel dUTP/dUDP binding fold.
|
| |
Structure,
12,
41-53.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Barabás,
V.Pongrácz,
J.Kovári,
M.Wilmanns,
and
B.G.Vértessy
(2004).
Structural insights into the catalytic mechanism of phosphate ester hydrolysis by dUTPase.
|
| |
J Biol Chem,
279,
42907-42915.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Dubrovay,
Z.Gáspári,
E.Hunyadi-Gulyás,
K.F.Medzihradszky,
A.Perczel,
and
B.G.Vértessy
(2004).
Multidimensional NMR identifies the conformational shift essential for catalytic competence in the 60-kDa Drosophila melanogaster dUTPase trimer.
|
| |
J Biol Chem,
279,
17945-17950.
|
 |
|
|
|
|
 |
D.Mustafi,
A.Bekesi,
B.G.Vertessy,
and
M.W.Makinen
(2003).
Catalytic and structural role of the metal ion in dUTP pyrophosphatase.
|
| |
Proc Natl Acad Sci U S A,
100,
5670-5675.
|
 |
|
|
|
|
 |
E.Johansson,
O.Bjornberg,
P.O.Nyman,
and
S.Larsen
(2003).
Structure of the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii and its relation to other homotrimeric dUTPases.
|
| |
J Biol Chem,
278,
27916-27922.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Li,
H.Xu,
D.E.Graham,
and
R.H.White
(2003).
The Methanococcus jannaschii dCTP deaminase is a bifunctional deaminase and diphosphatase.
|
| |
J Biol Chem,
278,
11100-11106.
|
 |
|
|
|
|
 |
O.Barabás,
M.Rumlová,
A.Erdei,
V.Pongrácz,
I.Pichová,
and
B.G.Vértessy
(2003).
dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency.
|
| |
J Biol Chem,
278,
38803-38812.
|
 |
|
|
|
|
 |
O.Björnberg,
J.Neuhard,
and
P.O.Nyman
(2003).
A bifunctional dCTP deaminase-dUTP nucleotidohydrolase from the hyperthermophilic archaeon Methanocaldococcus jannaschii.
|
| |
J Biol Chem,
278,
20667-20672.
|
 |
|
|
|
|
 |
A.González,
G.Larsson,
R.Persson,
and
E.Cedergren-Zeppezauer
(2001).
Atomic resolution structure of Escherichia coli dUTPase determined ab initio.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
767-774.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.W.Han,
J.Y.Lee,
J.K.Yang,
B.I.Lee,
and
S.W.Suh
(2001).
Crystallization and preliminary X-ray crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Saccharomyces cerevisiae.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1147-1149.
|
 |
|
|
|
|
 |
F.Hidalgo-Zarco,
A.G.Camacho,
V.Bernier-Villamor,
J.Nord,
L.M.Ruiz-Pérez,
and
D.González-Pacanowska
(2001).
Kinetic properties and inhibition of the dimeric dUTPase-dUDPase from Leishmania major.
|
| |
Protein Sci,
10,
1426-1433.
|
 |
|
|
|
|
 |
K.M.Kim,
E.C.Yi,
D.Baker,
and
K.Y.Zhang
(2001).
Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
759-762.
|
 |
|
|
|
|
 |
K.Reus,
J.Mayer,
M.Sauter,
H.Zischler,
N.Müller-Lantzsch,
and
E.Meese
(2001).
HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2).
|
| |
J Virol,
75,
8917-8926.
|
 |
|
|
|
|
 |
R.Persson,
M.Harkiolaki,
J.McGeehan,
and
K.S.Wilson
(2001).
Crystallization and preliminary crystallographic analysis of deoxyuridine 5'-triphosphate nucleotidohydrolase from Bacillus subtilis.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
876-878.
|
 |
|
|
|
|
 |
G.S.Prasad,
E.A.Stura,
J.H.Elder,
and
C.D.Stout
(2000).
Structures of feline immunodeficiency virus dUTP pyrophosphatase and its nucleotide complexes in three crystal forms.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1100-1109.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.M.Baldo,
and
M.A.McClure
(1999).
Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts.
|
| |
J Virol,
73,
7710-7721.
|
 |
|
|
|
|
 |
M.Oliveros,
R.García-Escudero,
A.Alejo,
E.Viñuela,
M.L.Salas,
and
J.Salas
(1999).
African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages.
|
| |
J Virol,
73,
8934-8943.
|
 |
|
|
|
|
 |
V.Bernier-Villamor,
A.Camacho,
D.González-Pacanowska,
E.Cedergren-Zeppezauer,
A.Antson,
and
K.S.Wilson
(1999).
Crystallization and preliminary X-ray diffraction of Trypanosoma cruzi dUTPase.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
528-530.
|
 |
|
|
|
|
 |
D.Prangishvili,
H.P.Klenk,
G.Jakobs,
A.Schmiechen,
C.Hanselmann,
I.Holz,
and
W.Zillig
(1998).
Biochemical and phylogenetic characterization of the dUTPase from the archaeal virus SIRV.
|
| |
J Biol Chem,
273,
6024-6029.
|
 |
|
|
|
|
 |
M.Bergdoll,
M.H.Remy,
C.Cagnon,
J.M.Masson,
and
P.Dumas
(1997).
Proline-dependent oligomerization with arm exchange.
|
| |
Structure,
5,
391-401.
|
 |
|
|
|
|
 |
R.D.Ladner,
and
S.J.Caradonna
(1997).
The human dUTPase gene encodes both nuclear and mitochondrial isoforms. Differential expression of the isoforms and characterization of a cDNA encoding the mitochondrial species.
|
| |
J Biol Chem,
272,
19072-19080.
|
 |
|
|
|
|
 |
D.G.Vassylyev,
and
K.Morikawa
(1996).
Precluding uracil from DNA.
|
| |
Structure,
4,
1381-1385.
|
 |
|
|
|
|
 |
G.S.Prasad,
E.A.Stura,
D.E.McRee,
G.S.Laco,
C.Hasselkus-Light,
J.H.Elder,
and
C.D.Stout
(1996).
Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.
|
| |
Protein Sci,
5,
2429-2437.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |