 |
PDBsum entry 1q1f
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxygen storage/transport
|
PDB id
|
|
|
|
1q1f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Proteins
56:85-92
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
The structure of murine neuroglobin: Novel pathways for ligand migration and binding.
|
|
B.Vallone,
K.Nienhaus,
M.Brunori,
G.U.Nienhaus.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Neuroglobin, a recently discovered globin predominantly expressed in neuronal
tissue of vertebrates, binds small, gaseous ligands at the sixth coordination
position of the heme iron. In the absence of an exogenous ligand, the distal
histidine (His64) binds to the heme iron in the ferrous and ferric states. The
crystal structure of murine ferric (met) neuroglobin at 1.5 A reveals
interesting features relevant to the ligand binding mechanism. Only weak
selectivity is observed for the two possible heme orientations, the occupancy
ratio being 70:30. Two small internal cavities are present on the heme distal
side, which enable the His64(E7) side chain to move out of the way upon
exogenous ligand binding. Moreover, a third, huge cavity (volume approximately
290 A3) connecting both sides of the heme, is open towards the exterior and
provides a potential passageway for ligands. The CD and EF corners exhibit
substantial flexibility, which may assist ligands in entering the protein and
accessing the active site. Based on this high-resolution structure, further
structure-function studies can be planned to elucidate the role of neuroglobin
in physiological responses to hypoxia.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. The different heme conformers of Ngb. Blue: conformer
A (70% occupancy). Red: conformer B (30%). Close distances are:
Tyr44(CD3) OH
to heme propionate O2A
= 2.6 Å, heme propionate O2A
to Wat3 = 2.7 Å, Lys67(E10) NZ
to heme propionate O1A
= 2.7 Å.
|
 |
Figure 6.
Figure 6. Modeling dioxygen binding to the distal site of Ngb.
a: The original His64(E7) position ( [1]
= 178.1°) overlaps with the first atom of the diatomic
ligand (0.28 Å). b: His64(E7) swings towards the interior;
at [1]
= -72.5°, there are no close contacts of the imidazole side
chain with other amino acids or with the bound ligand. c:
His64(E7) swings towards the exterior; at [1]
= 114.5°, there is a steric clash with O2A of the heme
propionate (distance 0.63 Å) and close contact with
Tyr44(CD3)-OH (2.14 Å) and Wat3 (1.95 Å).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from John Wiley & Sons, Inc.:
Proteins
(2004,
56,
85-92)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.Zhang,
J.Xu,
Y.Li,
W.Du,
and
W.Fang
(2011).
Molecular dynamics simulation of carboxy and deoxy human cytoglobin in solution.
|
| |
J Inorg Biochem,
105,
949-956.
|
 |
|
|
|
|
 |
J.Xu,
G.Yin,
and
W.Du
(2011).
Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation.
|
| |
Proteins,
79,
191-202.
|
 |
|
|
|
|
 |
P.Palladino,
G.L.Scaglione,
A.Arcovito,
R.Maria Vitale,
P.Amodeo,
B.Vallone,
M.Brunori,
E.Benedetti,
and
F.Rossi
(2011).
Neuroglobin-prion protein interaction: what's the function?
|
| |
J Pept Sci,
17,
387-391.
|
 |
|
|
|
|
 |
J.Xu,
G.Yin,
F.Huang,
B.Wang,
and
W.Du
(2010).
Molecular dynamics simulation of a carboxy murine neuroglobin mutated on the proximal side: heme displacement and concomitant rearrangement in loop regions.
|
| |
J Mol Model,
16,
759-770.
|
 |
|
|
|
|
 |
T.Brittain,
J.Skommer,
K.Henty,
N.Birch,
and
S.Raychaudhuri
(2010).
A role for human neuroglobin in apoptosis.
|
| |
IUBMB Life,
62,
878-885.
|
 |
|
|
|
|
 |
T.Brittain,
J.Skommer,
S.Raychaudhuri,
and
N.Birch
(2010).
An antiapoptotic neuroprotective role for neuroglobin.
|
| |
Int J Mol Sci,
11,
2306-2321.
|
 |
|
|
|
|
 |
E.Nickel,
K.Nienhaus,
C.Lu,
S.R.Yeh,
and
G.U.Nienhaus
(2009).
Ligand and substrate migration in human indoleamine 2,3-dioxygenase.
|
| |
J Biol Chem,
284,
31548-31554.
|
 |
|
|
|
|
 |
L.Capece,
M.A.Marti,
A.Bidon-Chanal,
A.Nadra,
F.J.Luque,
and
D.A.Estrin
(2009).
High pressure reveals structural determinants for globin hexacoordination: neuroglobin and myoglobin cases.
|
| |
Proteins,
75,
885-894.
|
 |
|
|
|
|
 |
T.Moschetti,
U.Mueller,
J.Schulze,
M.Brunori,
and
B.Vallone
(2009).
The structure of neuroglobin at high Xe and Kr pressure reveals partial conservation of globin internal cavities.
|
| |
Biophys J,
97,
1700-1708.
|
 |
|
|
|
|
 |
A.D.Nadra,
M.A.Martí,
A.Pesce,
M.Bolognesi,
and
D.A.Estrin
(2008).
Exploring the molecular basis of heme coordination in human neuroglobin.
|
| |
Proteins,
71,
695-705.
|
 |
|
|
|
|
 |
A.Giuffrè,
T.Moschetti,
B.Vallone,
and
M.Brunori
(2008).
Is neuroglobin a signal transducer?
|
| |
IUBMB Life,
60,
410-413.
|
 |
|
|
|
|
 |
J.Ostojic,
S.Grozdanic,
N.A.Syed,
M.S.Hargrove,
J.T.Trent,
M.H.Kuehn,
R.H.Kardon,
Y.H.Kwon,
and
D.S.Sakaguchi
(2008).
Neuroglobin and cytoglobin distribution in the anterior eye segment: a comparative immunohistochemical study.
|
| |
J Histochem Cytochem,
56,
863-872.
|
 |
|
|
|
|
 |
M.Anselmi,
M.Brunori,
B.Vallone,
and
A.Di Nola
(2008).
Molecular dynamics simulation of the neuroglobin crystal: comparison with the simulation in solution.
|
| |
Biophys J,
95,
4157-4162.
|
 |
|
|
|
|
 |
O.M.Lardinois,
K.B.Tomer,
R.P.Mason,
and
L.J.Deterding
(2008).
Identification of protein radicals formed in the human neuroglobin-H2O2 reaction using immuno-spin trapping and mass spectrometry.
|
| |
Biochemistry,
47,
10440-10448.
|
 |
|
|
|
|
 |
H.Ishikawa,
S.Kim,
K.Kwak,
K.Wakasugi,
and
M.D.Fayer
(2007).
Disulfide bond influence on protein structural dynamics probed with 2D-IR vibrational echo spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
104,
19309-19314.
|
 |
|
|
|
|
 |
K.Nienhaus,
J.E.Knapp,
P.Palladino,
W.E.Royer,
and
G.U.Nienhaus
(2007).
Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis.
|
| |
Biochemistry,
46,
14018-14031.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Thijs,
E.Vinck,
A.Bolli,
F.Trandafir,
X.Wan,
D.Hoogewijs,
M.Coletta,
A.Fago,
R.E.Weber,
S.Van Doorslaer,
P.Ascenzi,
M.Alam,
L.Moens,
and
S.Dewilde
(2007).
Characterization of a globin-coupled oxygen sensor with a gene-regulating function.
|
| |
J Biol Chem,
282,
37325-37340.
|
 |
|
|
|
|
 |
M.Anselmi,
M.Brunori,
B.Vallone,
and
A.Di Nola
(2007).
Molecular dynamics simulation of deoxy and carboxy murine neuroglobin in water.
|
| |
Biophys J,
93,
434-441.
|
 |
|
|
|
|
 |
P.Ascenzi,
A.Bocedi,
G.Antonini,
M.Bolognesi,
and
M.Fasano
(2007).
Reductive nitrosylation and peroxynitrite-mediated oxidation of heme-hemopexin.
|
| |
FEBS J,
274,
551-562.
|
 |
|
|
|
|
 |
S.Van Doorslaer,
and
E.Vinck
(2007).
The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins.
|
| |
Phys Chem Chem Phys,
9,
4620-4638.
|
 |
|
|
|
|
 |
E.Vinck,
S.Van Doorslaer,
S.Dewilde,
G.Mitrikas,
A.Schweiger,
and
L.Moens
(2006).
Analyzing heme proteins using EPR techniques: the heme-pocket structure of ferric mouse neuroglobin.
|
| |
J Biol Inorg Chem,
11,
467-475.
|
 |
|
|
|
|
 |
F.A.Walker
(2006).
The heme environment of mouse neuroglobin: histidine imidazole plane orientations obtained from solution NMR and EPR spectroscopy as compared with X-ray crystallography.
|
| |
J Biol Inorg Chem,
11,
391-397.
|
 |
|
|
|
|
 |
W.De Laurentis,
K.Leang,
K.Hahn,
B.Podemski,
A.Adam,
S.Kroschwald,
L.G.Carter,
K.H.van Pee,
and
J.H.Naismith
(2006).
Preliminary crystallographic characterization of PrnB, the second enzyme in the pyrrolnitrin biosynthetic pathway.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
1134-1137.
|
 |
|
|
|
|
 |
A.I.Ioanitescu,
S.Dewilde,
L.Kiger,
M.C.Marden,
L.Moens,
and
S.Van Doorslaer
(2005).
Characterization of nonsymbiotic tomato hemoglobin.
|
| |
Biophys J,
89,
2628-2639.
|
 |
|
|
|
|
 |
A.Pesce,
M.Nardini,
S.Dewilde,
D.Hoogewijs,
P.Ascenzi,
L.Moens,
and
M.Bolognesi
(2005).
Modulation of oxygen binding to insect hemoglobins: the structure of hemoglobin from the botfly Gasterophilus intestinalis.
|
| |
Protein Sci,
14,
3057-3063.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Hamdane,
L.Kiger,
G.H.Hoa,
S.Dewilde,
J.Uzan,
T.Burmester,
T.Hankeln,
L.Moens,
and
M.C.Marden
(2005).
High pressure enhances hexacoordination in neuroglobin and other globins.
|
| |
J Biol Chem,
280,
36809-36814.
|
 |
|
|
|
|
 |
D.de Sanctis,
S.Dewilde,
C.Vonrhein,
A.Pesce,
L.Moens,
P.Ascenzi,
T.Hankeln,
T.Burmester,
M.Ponassi,
M.Nardini,
and
M.Bolognesi
(2005).
Bishistidyl heme hexacoordination, a key structural property in Drosophila melanogaster hemoglobin.
|
| |
J Biol Chem,
280,
27222-27229.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Brunori,
A.Giuffrè,
K.Nienhaus,
G.U.Nienhaus,
F.M.Scandurra,
and
B.Vallone
(2005).
Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes.
|
| |
Proc Natl Acad Sci U S A,
102,
8483-8488.
|
 |
|
|
|
|
 |
S.Schneider,
and
M.Paoli
(2005).
Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
802-805.
|
 |
|
|
|
|
 |
A.Fago,
C.Hundahl,
S.Dewilde,
K.Gilany,
L.Moens,
and
R.E.Weber
(2004).
Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance.
|
| |
J Biol Chem,
279,
44417-44426.
|
 |
|
|
|
|
 |
B.Vallone,
K.Nienhaus,
A.Matthes,
M.Brunori,
and
G.U.Nienhaus
(2004).
The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity.
|
| |
Proc Natl Acad Sci U S A,
101,
17351-17356.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |