spacer
spacer

PDBsum entry 1pjs

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase/oxidoreductase/lyase PDB id
1pjs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
443 a.a. *
Ligands
SAH ×2
NAD ×2
PGE ×2
PO4
Waters ×212
* Residue conservation analysis
PDB id:
1pjs
Name: Transferase/oxidoreductase/lyase
Title: The co-crystal structure of cysg, the multifunctional methyltransferase/dehydrogenase/ferrochelatase for siroheme synthesis, in complex with it NAD cofactor
Structure: Siroheme synthase. Chain: a, b. Synonym: cysg. Engineered: yes. Other_details: residues 1-212 (cysgb) are a dehydrogenase/ferrochelatase, residues 213-457 (cysga) are a bismethyltransferase
Source: Salmonella typhimurium. Organism_taxid: 602. Gene: cysg or stm3477. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.40Å     R-factor:   0.239     R-free:   0.281
Authors: M.E.Stroupe,H.K.Leech,D.S.Daniels,M.J.Warren,E.D.Getzoff
Key ref:
M.E.Stroupe et al. (2003). CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol, 10, 1064-1073. PubMed id: 14595395 DOI: 10.1038/nsb1007
Date:
03-Jun-03     Release date:   02-Dec-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P25924  (CYSG_SALTY) -  Siroheme synthase from Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)
Seq:
Struc:
457 a.a.
443 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.1.3.1.76  - precorrin-2 dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Corrin and Siroheme Biosynthesis (part 2)
      Reaction: precorrin-2 + NAD+ = sirohydrochlorin + NADH + 2 H+
precorrin-2
Bound ligand (Het Group name = NAD)
corresponds exactly
+ NAD(+)
= sirohydrochlorin
+ NADH
+ 2 × H(+)
   Enzyme class 2: E.C.2.1.1.107  - uroporphyrinogen-III C-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: uroporphyrinogen III + 2 S-adenosyl-L-methionine = precorrin-2 + 2 S-adenosyl-L-homocysteine + H+
uroporphyrinogen III
+ 2 × S-adenosyl-L-methionine
= precorrin-2
+ 2 × S-adenosyl-L-homocysteine
+ 2 × H(+)
Bound ligand (Het Group name = SAH)
corresponds exactly
   Enzyme class 3: E.C.4.99.1.4  - sirohydrochlorin ferrochelatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: siroheme + 2 H+ = sirohydrochlorin + Fe2+
siroheme
+ 2 × H(+)
= sirohydrochlorin
+ 2 × Fe(2+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsb1007 Nat Struct Biol 10:1064-1073 (2003)
PubMed id: 14595395  
 
 
CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis.
M.E.Stroupe, H.K.Leech, D.S.Daniels, M.J.Warren, E.D.Getzoff.
 
  ABSTRACT  
 
Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B(12)) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Siroheme biosynthesis and its relationship to cobalamin (vitamin B[12]) and protoporphyrin IX-derived macrocycles (heme and chlorophyll).
Figure 5.
Figure 5. A stereo view of the methyltransferase active site from the native CysG structure, which sits deep within a cleft between the domains IA and IIA. (a) SAH (green) remains bound in the active site during purification and crystallization. Residues that bind SAH and that form the hydrophobic platform in the center of the active site are purple. Atoms are colored as in Figure 3. (b) The methyltransferase active site is an asymmetric slot with charged residues (blue) circling a hydrophobic patch (purple). (c) A model of uro'gen III in the CysGA active site. Uro'gen III is dark gray. This tetrapyrrole-binding model demonstrates the relationship among residues we know to be important for the methyltransferase reaction in the context of bound substrate. Same view as in b. The reactive pyrrole group is marked with an asterisk.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 1064-1073) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20233778 M.Pränting, and D.I.Andersson (2010).
Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2.
  J Antimicrob Chemother, 65, 876-887.  
  20532744 S.Zappa, K.Li, and C.E.Bauer (2010).
The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus.
  Adv Exp Med Biol, 675, 229-250.  
19118370 M.P.Thorgersen, and D.M.Downs (2009).
Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica.
  Microbiology, 155, 295-304.  
19796169 R.S.Zajicek, S.Bali, S.Arnold, A.A.Brindley, M.J.Warren, and S.J.Ferguson (2009).
d(1) haem biogenesis - assessing the roles of three nir gene products.
  FEBS J, 276, 6399-6411.  
19267692 S.A.Lobo, A.Brindley, M.J.Warren, and L.M.Saraiva (2009).
Functional characterization of the early steps of tetrapyrrole biosynthesis and modification in Desulfovibrio vulgaris Hildenborough.
  Biochem J, 420, 317-325.  
19754882 S.Storbeck, J.Walther, J.Müller, V.Parmar, H.M.Schiebel, D.Kemken, T.Dülcks, M.J.Warren, and G.Layer (2009).
The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis.
  FEBS J, 276, 5973-5982.  
18588505 H.L.Schubert, R.S.Rose, H.K.Leech, A.A.Brindley, C.P.Hill, S.E.Rigby, and M.J.Warren (2008).
Structure and function of SirC from Bacillus megaterium: a metal-binding precorrin-2 dehydrogenase.
  Biochem J, 415, 257-263.
PDB code: 3dfz
17261801 A.Medlock, L.Swartz, T.A.Dailey, H.A.Dailey, and W.N.Lanzilotta (2007).
Substrate interactions with human ferrochelatase.
  Proc Natl Acad Sci U S A, 104, 1789-1793.
PDB codes: 2hrc 2hre
17122346 J.Fan, Q.Liu, Q.Hao, M.Teng, and L.Niu (2007).
Crystal structure of uroporphyrinogen decarboxylase from Bacillus subtilis.
  J Bacteriol, 189, 3573-3580.
PDB code: 2inf
17906152 J.Xiong, C.E.Bauer, and A.Pancholy (2007).
Insight into the haem d1 biosynthesis pathway in heliobacteria through bioinformatics analysis.
  Microbiology, 153, 3548-3562.  
17192262 M.Matsushita, N.N.Suzuki, K.Obara, Y.Fujioka, Y.Ohsumi, and F.Inagaki (2007).
Structure of Atg5.Atg16, a complex essential for autophagy.
  J Biol Chem, 282, 6763-6772.
PDB codes: 2dym 2dyo
17720790 M.P.Thorgersen, and D.M.Downs (2007).
Cobalt targets multiple metabolic processes in Salmonella enterica.
  J Bacteriol, 189, 7774-7781.  
17567575 S.Frank, E.Deery, A.A.Brindley, H.K.Leech, A.Lawrence, P.Heathcote, H.L.Schubert, K.Brocklehurst, S.E.Rigby, M.J.Warren, and R.W.Pickersgill (2007).
Elucidation of substrate specificity in the cobalamin (vitamin B12) biosynthetic methyltransferases. Structure and function of the C20 methyltransferase (CbiL) from Methanothermobacter thermautotrophicus.
  J Biol Chem, 282, 23957-23969.
PDB code: 2qbu
16469498 S.Al-Karadaghi, R.Franco, M.Hansson, J.A.Shelnutt, G.Isaya, and G.C.Ferreira (2006).
Chelatases: distort to select?
  Trends Biochem Sci, 31, 135-142.  
16634582 S.Cai, T.K.h.Shokhireva, D.L.Lichtenberger, and F.A.Walker (2006).
NMR and EPR studies of chloroiron(III) tetraphenyl-chlorin and its complexes with imidazoles and pyridines of widely differing basicities.
  Inorg Chem, 45, 3519-3531.  
17139082 T.Deva, E.N.Baker, C.J.Squire, and C.A.Smith (2006).
Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).
  Acta Crystallogr D Biol Crystallogr, 62, 1466-1474.
PDB code: 2f00
15545265 E.Raux-Deery, H.K.Leech, K.A.Nakrieko, K.J.McLean, A.W.Munro, P.Heathcote, S.E.Rigby, A.G.Smith, and M.J.Warren (2005).
Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-located sirohydrochlorin ferrochelatase containing a 2FE-2S center.
  J Biol Chem, 280, 4713-4721.  
15983414 P.H.Rehse, T.Kitao, and T.H.Tahirov (2005).
Structure of a closed-form uroporphyrinogen-III C-methyltransferase from Thermus thermophilus.
  Acta Crystallogr D Biol Crystallogr, 61, 913-919.
PDB codes: 1v9a 1va0
16225687 P.Z.Kozbial, and A.R.Mushegian (2005).
Natural history of S-adenosylmethionine-binding proteins.
  BMC Struct Biol, 5, 19.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer