 |
PDBsum entry 1p9h
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion
|
PDB id
|
|
|
|
1p9h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
23:701-711
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll.
|
|
H.Nummelin,
M.C.Merckel,
J.C.Leo,
H.Lankinen,
M.Skurnik,
A.Goldman.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of the recombinant collagen-binding domain of Yersinia
adhesin YadA from Yersinia enterocolitica serotype O:3 was solved at 1.55 A
resolution. The trimeric structure is composed of head and neck regions, and the
collagen binding head region is a novel nine-coiled left-handed parallel
beta-roll. Before the beta-roll, the polypeptide loops from one monomer to the
rest, and after the beta-roll the neck region does the same, making the
transition from the globular head region to the narrower stalk domain. This
creates an intrinsically stable 'lock nut' structure. The trimeric form of YadA
is required for collagen binding, and mutagenesis of its surface residues
allowed identification of a putative collagen-binding surface. Furthermore, a
new structure-sequence motif for YadA beta-roll was used to identify putative
YadA-head-like domains in a variety of human and plant pathogens. Such domains
may therefore be a common bacterial strategy for avoiding host response.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4 (A) Organisation of the neck region in the C-terminus
of the head domain, viewed from the C-terminus along the z-axis.
The safety-pin structures as well as the beginnings of the stalk
domain helices are shown. Some residues in the neck region are
numbered for the magenta monomer for clarity. (B) The neck
region (viewed perpendicular to (A) showing one multi-centre
ionic network in the safety-pin region. It ties the three
'safety pins' to the central -roll
assembly. The colouring of the monomers is the same as in Figure
1C.
|
 |
Figure 5.
Figure 5 Most likely orientation of the collagen triple helix on
the surface of the trimeric YadA head domain. The mutant
residues are coloured according to their effect on type I
collagen so that the mutants that abolished the binding totally
are coloured red, to <20% in orange and the ones that attenuated
the binding in violet. The residues D180 and E182, which also
had an effect on the trimeric structure, are in blue. The figure
was prepared using PyMOL (DeLano, 2002).
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2004,
23,
701-711)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
Y.Zhai,
K.Zhang,
Y.Huo,
Y.Zhu,
Q.Zhou,
J.Lu,
I.Black,
X.Pang,
A.W.Roszak,
X.Zhang,
N.W.Isaacs,
and
F.Sun
(2011).
Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore.
|
| |
Biochem J,
435,
577-587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Leo,
H.Elovaara,
D.Bihan,
N.Pugh,
S.K.Kilpinen,
N.Raynal,
M.Skurnik,
R.W.Farndale,
and
A.Goldman
(2010).
First analysis of a bacterial collagen-binding protein with collagen Toolkits: promiscuous binding of YadA to collagens may explain how YadA interferes with host processes.
|
| |
Infect Immun,
78,
3226-3236.
|
 |
|
|
|
|
 |
R.Balder,
S.Lipski,
J.J.Lazarus,
W.Grose,
R.M.Wooten,
R.J.Hogan,
D.E.Woods,
and
E.R.Lafontaine
(2010).
Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells.
|
| |
BMC Microbiol,
10,
250.
|
 |
|
|
|
|
 |
S.Casutt-Meyer,
F.Renzi,
M.Schmaler,
N.J.Jann,
M.Amstutz,
and
G.R.Cornelis
(2010).
Oligomeric coiled-coil adhesin YadA is a double-edged sword.
|
| |
PLoS One,
5,
e15159.
|
 |
|
|
|
|
 |
T.E.Edwards,
I.Phan,
J.Abendroth,
S.H.Dieterich,
A.Masoudi,
W.Guo,
S.N.Hewitt,
A.Kelley,
D.Leibly,
M.J.Brittnacher,
B.L.Staker,
S.I.Miller,
W.C.Van Voorhis,
P.J.Myler,
and
L.J.Stewart
(2010).
Structure of a Burkholderia pseudomallei trimeric autotransporter adhesin head.
|
| |
PLoS One,
5,
0.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.J.Wells,
M.Totsika,
and
M.A.Schembri
(2010).
Autotransporters of Escherichia coli: a sequence-based characterization.
|
| |
Microbiology,
156,
2459-2469.
|
 |
|
|
|
|
 |
U.Lehr,
M.Schütz,
P.Oberhettinger,
F.Ruiz-Perez,
J.W.Donald,
T.Palmer,
D.Linke,
I.R.Henderson,
and
I.B.Autenrieth
(2010).
C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA.
|
| |
Mol Microbiol,
78,
932-946.
|
 |
|
|
|
|
 |
C.Yu,
K.P.Mintz,
and
T.Ruiz
(2009).
Investigation of the three-dimensional architecture of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans by electron tomography.
|
| |
J Bacteriol,
191,
6253-6261.
|
 |
|
|
|
|
 |
E.R.LaFontaine,
L.E.Snipes,
B.Bullard,
A.L.Brauer,
S.Sethi,
and
T.F.Murphy
(2009).
Identification of domains of the Hag/MID surface protein recognized by systemic and mucosal antibodies in adults with chronic obstructive pulmonary disease following clearance of Moraxella catarrhalis.
|
| |
Clin Vaccine Immunol,
16,
653-659.
|
 |
|
|
|
|
 |
J.Brockmeyer,
S.Spelten,
T.Kuczius,
M.Bielaszewska,
and
H.Karch
(2009).
Structure and function relationship of the autotransport and proteolytic activity of EspP from Shiga toxin-producing Escherichia coli.
|
| |
PLoS One,
4,
e6100.
|
 |
|
|
|
|
 |
Y.Xiang,
P.G.Leiman,
L.Li,
S.Grimes,
D.L.Anderson,
and
M.G.Rossmann
(2009).
Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike.
|
| |
Mol Cell,
34,
375-386.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.Sheets,
S.A.Grass,
S.E.Miller,
and
J.W.St Geme
(2008).
Identification of a novel trimeric autotransporter adhesin in the cryptic genospecies of Haemophilus.
|
| |
J Bacteriol,
190,
4313-4320.
|
 |
|
|
|
|
 |
C.Yu,
T.Ruiz,
C.Lenox,
and
K.P.Mintz
(2008).
Functional mapping of an oligomeric autotransporter adhesin of Aggregatibacter actinomycetemcomitans.
|
| |
J Bacteriol,
190,
3098-3109.
|
 |
|
|
|
|
 |
G.Meng,
J.W.St Geme,
and
G.Waksman
(2008).
Repetitive architecture of the Haemophilus influenzae Hia trimeric autotransporter.
|
| |
J Mol Biol,
384,
824-836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Leo,
H.Elovaara,
B.Brodsky,
M.Skurnik,
and
A.Goldman
(2008).
The Yersinia adhesin YadA binds to a collagenous triple-helical conformation but without sequence specificity.
|
| |
Protein Eng Des Sel,
21,
475-484.
|
 |
|
|
|
|
 |
M.Biedzka-Sarek,
S.Salmenlinna,
M.Gruber,
A.N.Lupas,
S.Meri,
and
M.Skurnik
(2008).
Functional mapping of YadA- and Ail-mediated binding of human factor H to Yersinia enterocolitica serotype O:3.
|
| |
Infect Immun,
76,
5016-5027.
|
 |
|
|
|
|
 |
M.J.Brooks,
J.L.Sedillo,
N.Wagner,
C.A.Laurence,
W.Wang,
A.S.Attia,
E.J.Hansen,
and
S.D.Gray-Owen
(2008).
Modular arrangement of allelic variants explains the divergence in Moraxella catarrhalis UspA protein function.
|
| |
Infect Immun,
76,
5330-5340.
|
 |
|
|
|
|
 |
N.Ackermann,
M.Tiller,
G.Anding,
A.Roggenkamp,
and
J.Heesemann
(2008).
Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica.
|
| |
J Bacteriol,
190,
5031-5043.
|
 |
|
|
|
|
 |
P.Szczesny,
and
A.Lupas
(2008).
Domain annotation of trimeric autotransporter adhesins--daTAA.
|
| |
Bioinformatics,
24,
1251-1256.
|
 |
|
|
|
|
 |
P.Szczesny,
D.Linke,
A.Ursinus,
K.Bär,
H.Schwarz,
T.M.Riess,
V.A.Kempf,
A.N.Lupas,
J.Martin,
and
K.Zeth
(2008).
Structure of the head of the Bartonella adhesin BadA.
|
| |
PLoS Pathog,
4,
e1000119.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Conners,
D.J.Hill,
E.Borodina,
C.Agnew,
S.J.Daniell,
N.M.Burton,
R.B.Sessions,
A.R.Clarke,
L.E.Catto,
D.Lammie,
T.Wess,
R.L.Brady,
and
M.Virji
(2008).
The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil.
|
| |
EMBO J,
27,
1779-1789.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Forman,
C.R.Wulff,
T.Myers-Morales,
C.Cowan,
R.D.Perry,
and
S.C.Straley
(2008).
yadBC of Yersinia pestis, a new virulence determinant for bubonic plague.
|
| |
Infect Immun,
76,
578-587.
|
 |
|
|
|
|
 |
V.Kirjavainen,
H.Jarva,
M.Biedzka-Sarek,
A.M.Blom,
M.Skurnik,
and
S.Meri
(2008).
Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.
|
| |
PLoS Pathog,
4,
e1000140.
|
 |
|
|
|
|
 |
B.Bullard,
S.Lipski,
and
E.R.Lafontaine
(2007).
Regions important for the adhesin activity of Moraxella catarrhalis Hag.
|
| |
BMC Microbiol,
7,
65.
|
 |
|
|
|
|
 |
N.Dautin,
and
H.D.Bernstein
(2007).
Protein secretion in gram-negative bacteria via the autotransporter pathway.
|
| |
Annu Rev Microbiol,
61,
89.
|
 |
|
|
|
|
 |
R.Tiyawisutsri,
M.T.Holden,
S.Tumapa,
S.Rengpipat,
S.R.Clarke,
S.J.Foster,
W.C.Nierman,
N.P.Day,
and
S.J.Peacock
(2007).
Burkholderia Hep_Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis.
|
| |
BMC Microbiol,
7,
19.
|
 |
|
|
|
|
 |
S.Pukatzki,
A.T.Ma,
A.T.Revel,
D.Sturtevant,
and
J.J.Mekalanos
(2007).
Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin.
|
| |
Proc Natl Acad Sci U S A,
104,
15508-15513.
|
 |
|
|
|
|
 |
T.J.Barnard,
N.Dautin,
P.Lukacik,
H.D.Bernstein,
and
S.K.Buchanan
(2007).
Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
|
| |
Nat Struct Mol Biol,
14,
1214-1220.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Grosskinsky,
M.Schütz,
M.Fritz,
Y.Schmid,
M.C.Lamparter,
P.Szczesny,
A.N.Lupas,
I.B.Autenrieth,
and
D.Linke
(2007).
A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A autotransport.
|
| |
J Bacteriol,
189,
9011-9019.
|
 |
|
|
|
|
 |
D.Linke,
T.Riess,
I.B.Autenrieth,
A.Lupas,
and
V.A.Kempf
(2006).
Trimeric autotransporter adhesins: variable structure, common function.
|
| |
Trends Microbiol,
14,
264-270.
|
 |
|
|
|
|
 |
D.S.Kim,
Y.Chao,
and
M.H.Saier
(2006).
Protein-translocating trimeric autotransporters of gram-negative bacteria.
|
| |
J Bacteriol,
188,
5655-5667.
|
 |
|
|
|
|
 |
G.Meng,
N.K.Surana,
J.W.St Geme,
and
G.Waksman
(2006).
Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.
|
| |
EMBO J,
25,
2297-2304.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Heesemann,
A.Sing,
and
K.Trülzsch
(2006).
Yersinia's stratagem: targeting innate and adaptive immune defense.
|
| |
Curr Opin Microbiol,
9,
55-61.
|
 |
|
|
|
|
 |
J.Pizarro-Cerdá,
and
P.Cossart
(2006).
Bacterial adhesion and entry into host cells.
|
| |
Cell,
124,
715-727.
|
 |
|
|
|
|
 |
M.Junker,
C.C.Schuster,
A.V.McDonnell,
K.A.Sorg,
M.C.Finn,
B.Berger,
and
P.L.Clark
(2006).
Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins.
|
| |
Proc Natl Acad Sci U S A,
103,
4918-4923.
|
 |
|
|
|
|
 |
P.van Ulsen,
and
J.Tommassen
(2006).
Protein secretion and secreted proteins in pathogenic Neisseriaceae.
|
| |
FEMS Microbiol Rev,
30,
292-319.
|
 |
|
|
|
|
 |
R.Han,
C.C.Caswell,
E.Lukomska,
D.R.Keene,
M.Pawlowski,
J.M.Bujnicki,
J.K.Kim,
and
S.Lukomski
(2006).
Binding of the low-density lipoprotein by streptococcal collagen-like protein Scl1 of Streptococcus pyogenes.
|
| |
Mol Microbiol,
61,
351-367.
|
 |
|
|
|
|
 |
S.E.Cotter,
N.K.Surana,
S.Grass,
and
J.W.St Geme
(2006).
Trimeric autotransporters require trimerization of the passenger domain for stability and adhesive activity.
|
| |
J Bacteriol,
188,
5400-5407.
|
 |
|
|
|
|
 |
T.Heise,
and
P.Dersch
(2006).
Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake.
|
| |
Proc Natl Acad Sci U S A,
103,
3375-3380.
|
 |
|
|
|
|
 |
T.Ruiz,
C.Lenox,
M.Radermacher,
and
K.P.Mintz
(2006).
Novel surface structures are associated with the adhesion of Actinobacillus actinomycetemcomitans to collagen.
|
| |
Infect Immun,
74,
6163-6170.
|
 |
|
|
|
|
 |
B.Bullard,
S.L.Lipski,
and
E.R.Lafontaine
(2005).
Hag directly mediates the adherence of Moraxella catarrhalis to human middle ear cells.
|
| |
Infect Immun,
73,
5127-5136.
|
 |
|
|
|
|
 |
B.Capecchi,
J.Adu-Bobie,
F.Di Marcello,
L.Ciucchi,
V.Masignani,
A.Taddei,
R.Rappuoli,
M.Pizza,
and
B.Aricò
(2005).
Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells.
|
| |
Mol Microbiol,
55,
687-698.
|
 |
|
|
|
|
 |
C.Dehio
(2005).
Bartonella-host-cell interactions and vascular tumour formation.
|
| |
Nat Rev Microbiol,
3,
621-631.
|
 |
|
|
|
|
 |
F.Thieme,
R.Koebnik,
T.Bekel,
C.Berger,
J.Boch,
D.Büttner,
C.Caldana,
L.Gaigalat,
A.Goesmann,
S.Kay,
O.Kirchner,
C.Lanz,
B.Linke,
A.C.McHardy,
F.Meyer,
G.Mittenhuber,
D.H.Nies,
U.Niesbach-Klösgen,
T.Patschkowski,
C.Rückert,
O.Rupp,
S.Schneiker,
S.C.Schuster,
F.J.Vorhölter,
E.Weber,
A.Pühler,
U.Bonas,
D.Bartels,
and
O.Kaiser
(2005).
Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence.
|
| |
J Bacteriol,
187,
7254-7266.
|
 |
|
|
|
|
 |
M.A.Barocchi,
V.Masignani,
and
R.Rappuoli
(2005).
Opinion: Cell entry machines: a common theme in nature?
|
| |
Nat Rev Microbiol,
3,
349-358.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2005).
Survey of the year 2004 commercial optical biosensor literature.
|
| |
J Mol Recognit,
18,
431-478.
|
 |
|
|
|
|
 |
S.E.Cotter,
N.K.Surana,
and
J.W.St Geme
(2005).
Trimeric autotransporters: a distinct subfamily of autotransporter proteins.
|
| |
Trends Microbiol,
13,
199-205.
|
 |
|
|
|
|
 |
F.J.Stevens
(2004).
Amyloid formation: an emulation of matrix protein assembly?
|
| |
Amyloid,
11,
232-244.
|
 |
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
I.R.Henderson,
F.Navarro-Garcia,
M.Desvaux,
R.C.Fernandez,
and
D.Ala'Aldeen
(2004).
Type V protein secretion pathway: the autotransporter story.
|
| |
Microbiol Mol Biol Rev,
68,
692-744.
|
 |
|
|
|
|
 |
K.Kühnel,
T.Jarchau,
E.Wolf,
I.Schlichting,
U.Walter,
A.Wittinghofer,
and
S.V.Strelkov
(2004).
The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat.
|
| |
Proc Natl Acad Sci U S A,
101,
17027-17032.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Zhang,
B.B.Chomel,
M.K.Schau,
J.S.Goo,
S.Droz,
K.L.Kelminson,
S.S.George,
N.W.Lerche,
and
J.E.Koehler
(2004).
A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana.
|
| |
Proc Natl Acad Sci U S A,
101,
13630-13635.
|
 |
|
|
|
|
 |
T.Riess,
S.G.Andersson,
A.Lupas,
M.Schaller,
A.Schäfer,
P.Kyme,
J.Martin,
J.H.Wälzlein,
U.Ehehalt,
H.Lindroos,
M.Schirle,
A.Nordheim,
I.B.Autenrieth,
and
V.A.Kempf
(2004).
Bartonella adhesin a mediates a proangiogenic host cell response.
|
| |
J Exp Med,
200,
1267-1278.
|
 |
|
|
|
|
 |
Y.Schmid,
G.A.Grassl,
O.T.Bühler,
M.Skurnik,
I.B.Autenrieth,
and
E.Bohn
(2004).
Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells.
|
| |
Infect Immun,
72,
6780-6789.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |