spacer
spacer

PDBsum entry 1orm

Go to PDB code: 
protein links
Membrane protein PDB id
1orm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
148 a.a. *
* Residue conservation analysis
PDB id:
1orm
Name: Membrane protein
Title: Nmr fold of the outer membrane protein ompx in dhpc micelles
Structure: Outer membrane protein x. Chain: a. Synonym: outer membrane protein ompx. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: ompx. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 20 models
Authors: C.Fernandez,K.Adeishvili,K.Wuthrich
Key ref:
C.Fernández et al. (2001). Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A, 98, 2358-2363. PubMed id: 11226244 DOI: 10.1073/pnas.051629298
Date:
14-Mar-03     Release date:   22-Apr-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A917  (OMPX_ECOLI) -  Outer membrane protein X from Escherichia coli (strain K12)
Seq:
Struc:
171 a.a.
148 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1073/pnas.051629298 Proc Natl Acad Sci U S A 98:2358-2363 (2001)
PubMed id: 11226244  
 
 
Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
C.Fernández, K.Adeishvili, K.Wüthrich.
 
  ABSTRACT  
 
The (2)H,(13)C,(15)N-labeled, 148-residue integral membrane protein OmpX from Escherichia coli was reconstituted with dihexanoyl phosphatidylcholine (DHPC) in mixed micelles of molecular mass of about 60 kDa. Transverse relaxation-optimized spectroscopy (TROSY)-type triple resonance NMR experiments and TROSY-type nuclear Overhauser enhancement spectra were recorded in 2 mM aqueous solutions of these mixed micelles at pH 6.8 and 30 degrees C. Complete sequence-specific NMR assignments for the polypeptide backbone thus have been obtained. The (13)C chemical shifts and the nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution and in the collection of an input of conformational constraints for the computation of the global fold of the protein. The same type of polypeptide backbone fold is observed in the presently determined solution structure and the previously reported crystal structure of OmpX determined in the presence of the detergent n-octyltetraoxyethylene. Further structure refinement will have to rely on the additional resonance assignment of partially or fully protonated amino acid side chains, but the present data already demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure and function of integral membrane proteins.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. (a) Survey of the NMR assignments for OmpX/DHPC obtained by TROSY-type triple-resonance experiments. The residues for which the 1HN, 15N, 13C^ , 13C^ , and 13CO chemical shifts have been assigned are indicated by vertical bars in the respective rows. In the center, separating a and b, the amino acid sequence is indicated by the one-letter amino acid symbols, where the entries have been distributed over two rows, i.e., residue 1 is in the upper row, residue 2 is in the lower row, etc. (b) Plot of ( C^ C^ ) vs. the amino acid sequence. C^ and C^ were obtained as the differences between the experimental 13C^ and 13C^ chemical shifts in OmpX/DHPC and the corresponding random coil shifts. The value of ( C^ C^ ) for a particular residue i represents the average over the three consecutive residues i 1, i and i + 1, and was calculated as follows: - DCb)i = 1/3(DCi -1a + DCia + DCi+1a - DCi -1b - DCib - DCi+1b) (41). Negative values of ( C^ C^ ) indicate that residue i is located in a regular -strand (positive values would indicate location in a regular helical structure). The positions of the regular secondary structure elements in the crystal structure of OmpX are indicated at the top, and the external loops (L) and periplasmatic turns (T) are labeled according to Vogt and Schulz (23).
Figure 5.
Fig. 5. Stereoviews of the polypeptide backbone fold in OmpX. (a) Superposition of the 20 DYANA conformers that were selected to represent the NMR structure of OmpX. The superposition is for pairwise global best fit of the N, C^ , and C' backbone atoms of the -sheet amino acid residues in conformers 2-20 with the corresponding atoms in the conformer with the smallest residual target function value (Table 1). (b) Comparison of the mean NMR structure (blue) and the x-ray crystal structure (red) after superposition as in a. Periplasmatic and extracellular spaces are indicated according to ref. 23. The figure was prepared with the program MOLMOL (43).
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20922370 A.Choutko, A.Glättli, C.Fernández, C.Hilty, K.Wüthrich, and W.F.van Gunsteren (2011).
Membrane protein dynamics in different environments: simulation study of the outer membrane protein X in a lipid bilayer and in a micelle.
  Eur Biophys J, 40, 39-58.  
20820947 S.T.Vaiphei, Y.Tang, G.T.Montelione, and M.Inouye (2011).
The Use of the Condensed Single Protein Production System for Isotope-Labeled Outer Membrane Proteins, OmpA and OmpX in E. coli.
  Mol Biotechnol, 47, 205-210.  
  20633363 H.Saitô, I.Ando, and A.Ramamoorthy (2010).
Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins.
  Prog Nucl Magn Reson Spectrosc, 57, 181-228.  
19639312 L.J.Catoire, M.Zoonens, C.van Heijenoort, F.Giusti, E.Guittet, and J.L.Popot (2010).
Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX.
  Eur Biophys J, 39, 623-630.  
20538726 T.C.Freeman, and W.C.Wimley (2010).
A highly accurate statistical approach for the prediction of transmembrane beta-barrels.
  Bioinformatics, 26, 1965-1974.  
20333498 W.M.Schneider, Y.Tang, S.T.Vaiphei, L.Mao, M.Maglaqui, M.Inouye, M.J.Roth, and G.T.Montelione (2010).
Efficient condensed-phase production of perdeuterated soluble and membrane proteins.
  J Struct Funct Genomics, 11, 143-154.  
19205897 A.D.Gossert, C.Henry, M.J.Blommers, W.Jahnke, and C.Fernández (2009).
Time efficient detection of protein-ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment.
  J Biomol NMR, 43, 211-217.  
19248817 A.Diller, C.Loudet, F.Aussenac, G.Raffard, S.Fournier, M.Laguerre, A.Grélard, S.J.Opella, F.M.Marassi, and E.J.Dufourc (2009).
Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes.
  Biochimie, 91, 744-751.  
19115043 I.Ayala, R.Sounier, N.Usé, P.Gans, and J.Boisbouvier (2009).
An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein.
  J Biomol NMR, 43, 111-119.  
19856129 L.Mao, Y.Tang, S.T.Vaiphei, T.Shimazu, S.G.Kim, R.Mani, E.Fakhoury, E.White, G.T.Montelione, and M.Inouye (2009).
Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system.
  J Struct Funct Genomics, 10, 281-289.  
19950959 P.Stanczak, R.Horst, P.Serrano, and K.Wüthrich (2009).
NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment.
  J Am Chem Soc, 131, 18450-18456.  
19306928 S.Ye, K.T.Nguyen, S.V.Le Clair, and Z.Chen (2009).
In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy.
  J Struct Biol, 168, 61-77.  
17872960 D.C.Bay, J.D.O'Neil, and D.A.Court (2008).
Two-step folding of recombinant mitochondrial porin in detergent.
  Biophys J, 94, 457-468.  
18761469 J.Shin, W.Lee, and W.Lee (2008).
Structural proteomics by NMR spectroscopy.
  Expert Rev Proteomics, 5, 589-601.  
18479092 Q.Zhang, R.Horst, M.Geralt, X.Ma, W.X.Hong, M.G.Finn, R.C.Stevens, and K.Wüthrich (2008).
Microscale NMR screening of new detergents for membrane protein structural biology.
  J Am Chem Soc, 130, 7357-7363.  
17911261 B.Liang, and L.K.Tamm (2007).
Structure of outer membrane protein G by solution NMR spectroscopy.
  Proc Natl Acad Sci U S A, 104, 16140-16145.
PDB code: 2jqy
17307824 C.Loudet, S.Manet, S.Gineste, R.Oda, M.F.Achard, and E.J.Dufourc (2007).
Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS.
  Biophys J, 92, 3949-3959.  
17367712 C.M.Franzin, X.M.Gong, K.Thai, J.Yu, and F.M.Marassi (2007).
NMR of membrane proteins in micelles and bilayers: the FXYD family proteins.
  Methods, 41, 398-408.  
17481903 J.J.Lacapère, E.Pebay-Peyroula, J.M.Neumann, and C.Etchebest (2007).
Determining membrane protein structures: still a challenge!
  Trends Biochem Sci, 32, 259-270.  
17961504 S.F.Poget, and M.E.Girvin (2007).
Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better.
  Biochim Biophys Acta, 1768, 3098-3106.  
16826540 A.Koglin, C.Klammt, N.Trbovic, D.Schwarz, B.Schneider, B.Schäfer, F.Löhr, F.Bernhard, and V.Dötsch (2006).
Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins.
  Magn Reson Chem, 44, S17-S23.  
16826539 C.R.Sanders, and F.Sönnichsen (2006).
Solution NMR of membrane proteins: practice and challenges.
  Magn Reson Chem, 44, S24-S40.  
16569017 H.C.Ahn, N.Juranić, S.Macura, and J.L.Markley (2006).
Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.
  J Am Chem Soc, 128, 4398-4404.
PDB codes: 1yv8 1yva 2eya 2eyb 2eyc 2eyd
16187128 M.N.Triba, M.Zoonens, J.L.Popot, P.F.Devaux, and D.E.Warschawski (2006).
Reconstitution and alignment by a magnetic field of a beta-barrel membrane protein in bicelles.
  Eur Biophys J, 35, 268-275.  
17032756 R.Horst, G.Wider, J.Fiaux, E.B.Bertelsen, A.L.Horwich, and K.Wüthrich (2006).
Proton-proton Overhauser NMR spectroscopy with polypeptide chains in large structures.
  Proc Natl Acad Sci U S A, 103, 15445-15450.  
16719475 T.Cierpicki, B.Liang, L.K.Tamm, and J.H.Bushweller (2006).
Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A.
  J Am Chem Soc, 128, 6947-6951.
PDB code: 2ge4
15772756 D.Nietlispach (2005).
Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection TROSY scheme.
  J Biomol NMR, 31, 161-166.  
15956183 M.Zoonens, L.J.Catoire, F.Giusti, and J.L.Popot (2005).
NMR study of a membrane protein in detergent-free aqueous solution.
  Proc Natl Acad Sci U S A, 102, 8893-8898.  
15749771 R.A.Böckmann, and A.Caflisch (2005).
Spontaneous formation of detergent micelles around the outer membrane protein OmpX.
  Biophys J, 88, 3191-3204.  
15637152 V.Tugarinov, W.Y.Choy, V.Y.Orekhov, and L.E.Kay (2005).
Solution NMR-derived global fold of a monomeric 82-kDa enzyme.
  Proc Natl Acad Sci U S A, 102, 622-627.
PDB code: 1y8b
15185370 C.Hilty, G.Wider, C.Fernández, and K.Wüthrich (2004).
Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.
  Chembiochem, 5, 467-473.  
15189138 V.Tugarinov, P.M.Hwang, and L.E.Kay (2004).
Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins.
  Annu Rev Biochem, 73, 107-146.  
12633993 J.Torres, T.J.Stevens, and M.Samsó (2003).
Membrane proteins: the 'Wild West' of structural biology.
  Trends Biochem Sci, 28, 137-144.  
12899633 S.Conlan, and H.Bayley (2003).
Folding of a monomeric porin, OmpG, in detergent solution.
  Biochemistry, 42, 9453-9465.  
12370417 C.Fernández, C.Hilty, G.Wider, and K.Wüthrich (2002).
Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy.
  Proc Natl Acad Sci U S A, 99, 13533-13537.  
12119389 H.Patzelt, B.Simon, A.terLaak, B.Kessler, R.Kühne, P.Schmieder, D.Oesterhelt, and H.Oschkinat (2002).
The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy.
  Proc Natl Acad Sci U S A, 99, 9765-9770.
PDB codes: 1r2n 1r84
12124281 J.H.Kleinschmidt, and L.K.Tamm (2002).
Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy.
  Biophys J, 83, 994.  
11904408 J.Klein-Seetharaman, P.J.Reeves, M.C.Loewen, E.V.Getmanova, J.Chung, H.Schwalbe, P.E.Wright, and H.G.Khorana (2002).
Solution NMR spectroscopy of [alpha -15N]lysine-labeled rhodopsin: The single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequence.
  Proc Natl Acad Sci U S A, 99, 3452-3457.  
12357033 P.M.Hwang, W.Y.Choy, E.I.Lo, L.Chen, J.D.Forman-Kay, C.R.Raetz, G.G.Privé, R.E.Bishop, and L.E.Kay (2002).
Solution structure and dynamics of the outer membrane enzyme PagP by NMR.
  Proc Natl Acad Sci U S A, 99, 13560-13565.
PDB codes: 1mm4 1mm5
11785753 A.Arora, and L.K.Tamm (2001).
Biophysical approaches to membrane protein structure determination.
  Curr Opin Struct Biol, 11, 540-547.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer