spacer
spacer

PDBsum entry 1o7h

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1o7h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
448 a.a. *
193 a.a. *
Ligands
EDO ×4
SO4 ×4
FES
Metals
_FE
Waters ×358
* Residue conservation analysis
PDB id:
1o7h
Name: Oxidoreductase
Title: Naphthalene 1,2-dioxygenase with oxidized rieske iron sulphur center site.
Structure: Naphthalene 1,2-dioxygenase alpha subunit. Chain: a. Synonym: naphthalene 1,2-dioxygenase isp alpha, ndob, nahac. Engineered: yes. Naphthalene 1,2-dioxygenase beta subunit. Chain: b. Synonym: naphthalene 1,2-dioxygenase isp beta, ndoc, nahad. Engineered: yes
Source: Pseudomonas putida. Organism_taxid: 303. Strain: ncib 9816-4. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Hexamer (from PDB file)
Resolution:
2.20Å     R-factor:   0.208     R-free:   0.242
Authors: A.Karlsson,J.V.Parales,R.E.Parales,D.T.Gibson,H.Eklund,S.Ramaswamy
Key ref:
A.Karlsson et al. (2003). Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science, 299, 1039-1042. PubMed id: 12586937 DOI: 10.1126/science.1078020
Date:
05-Nov-02     Release date:   20-Feb-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A110  (NDOB_PSEPU) -  Naphthalene 1,2-dioxygenase system, large oxygenase component from Pseudomonas putida
Seq:
Struc:
449 a.a.
448 a.a.
Protein chain
Pfam   ArchSchema ?
P0A112  (NDOC_PSEPU) -  Naphthalene 1,2-dioxygenase system, small oxygenase component from Pseudomonas putida
Seq:
Struc:
194 a.a.
193 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chain A: E.C.1.14.12.12  - naphthalene 1,2-dioxygenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Aromatic 1,2-Dioxygenases
      Reaction: naphthalene + NADH + O2 + H+ = (1R,2S)-1,2-dihydronaphthalene-1,2-diol + NAD+
naphthalene
+ NADH
+ O2
+ H(+)
= (1R,2S)-1,2-dihydronaphthalene-1,2-diol
+ NAD(+)
      Cofactor: Fe cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.1078020 Science 299:1039-1042 (2003)
PubMed id: 12586937  
 
 
Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
A.Karlsson, J.V.Parales, R.E.Parales, D.T.Gibson, H.Eklund, S.Ramaswamy.
 
  ABSTRACT  
 
Binding of oxygen to iron is exploited in several biological and chemical processes. Although computational and spectroscopic results have suggested side-on binding, only end-on binding of oxygen to iron has been observed in crystal structures. We have determined structures of naphthalene dioxygenase that show a molecular oxygen species bound to the mononuclear iron in a side-on fashion. In a complex with substrate and dioxygen, the dioxygen molecule is lined up for an attack on the double bond of the aromatic substrate. The structures reported here provide the basis for a reaction mechanism and for the high stereospecificity of the reaction catalyzed by naphthalene dioxygenase.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. (All panels are stereopairs.) (A) Binding of naphthalene at the active site of NDO. The gray 2F[obs] - F[calc] map is contoured at 1.0 . (B) Binding of dioxygen to the mononuclear iron in the absence of substrate. The gray 2F[obs] - F[calc] map is contoured at 1.15 and the green F[obs] - F[calc] map (computed before the dioxygen molecule was modeled) at 3.8 × RMS (root mean square). (C) Binding of oxygen to the mononuclear iron in the presence of indole. The gray 2F[obs] - F[calc] map is contoured at 1.0 and the green F[obs] - F[calc] map (computed before the dioxygen molecule was modeled) at 4.0 × RMS. (D) Naphthalene cis-dihydrodiol bound to the active site of NDO. The gray 2F[obs] - F[calc] map is contoured at 1.0 . Superposition of the product complex and the substrate complex shows that the positions of the rings in the product and the substrate are similar. The product cannot move any closer to the iron, as it would bring the O from the product into van der Waals short contact with the His ligand of the Fe. The current distance between the O and the N of His is 2.9 Å. Color code: yellow, carbon; blue, nitrogen; red, oxygen; purple, iron.
Figure 2.
Fig. 2. (A) Scheme showing how the different structures in Fig. 1 can be arranged to follow the dihydroxylation reaction catalyzed by NDO. Naphthalene and indole are both substrates for the enzyme, and we have used them interchangeably in different studies of the enzyme (23). For simplicity we show only naphthalene here. The structures are as follows: 1, the resting enzyme with oxidized Rieske center and ferrous active site [Protein Data Bank (PDB) code 1O7H]; 2, the reduced enzyme (PDB code 1O7W); 3, binary dioxgen complex (PDB code 1O7M); 4, binary substrate complex, structures with both indole and naphthalene [PDB codes 1EG9 (indole) and 1O7G (naphthalene)]; 5, ternary substrate dioxygen species, structure with indole (PDB code 1O7N); and 6, product naphthalene cis-1,2-dihydrodiol (PDB code 1O7P). [2Fe-2S] refers to the nearest Rieske iron-sulfur cluster. (B) Chemical steps in the dioxygenation reaction carried out by Rieske dioxygenases.
 
  The above figures are reprinted by permission from the AAAs: Science (2003, 299, 1039-1042) copyright 2003.  
 
 
    Author's comment    
 
  Figure 2: It is has been shown spectroscopically by the John Lipscomb group, during the catalytic cycle, the substrate binds before dioxygen to the active site of the enzyme.
S. Ramaswamy.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22031443 J.Cho, S.Jeon, S.A.Wilson, L.V.Liu, E.A.Kang, J.J.Braymer, M.H.Lim, B.Hedman, K.O.Hodgson, J.S.Valentine, E.I.Solomon, and W.Nam (2011).
Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex.
  Nature, 478, 502-505.  
21063701 J.Seo, S.I.Kang, D.Won, M.Kim, J.Y.Ryu, S.W.Kang, B.H.Um, C.H.Pan, J.H.Ahn, Y.Chong, R.A.Kanaly, J.Han, and H.G.Hur (2011).
Absolute configuration-dependent epoxide formation from isoflavan-4-ol stereoisomers by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes strain KF707.
  Appl Microbiol Biotechnol, 89, 1773-1782.  
20380464 A.Mukherjee, M.A.Cranswick, M.Chakrabarti, T.K.Paine, K.Fujisawa, E.Münck, and L.Que (2010).
Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective.
  Inorg Chem, 49, 3618-3628.  
21107372 C.Cavazza, C.Bochot, P.Rousselot-Pailley, P.Carpentier, M.V.Cherrier, L.Martin, C.Marchi-Delapierre, J.C.Fontecilla-Camps, and S.Ménage (2010).
Crystallographic snapshots of the reaction of aromatic C-H with O(2) catalysed by a protein-bound iron complex.
  Nat Chem, 2, 1069-1076.
PDB codes: 3mvw 3mvx 3mvy 3mvz 3mw0 3mz9 3mzb
20689711 G.Bilis, and M.Louloudi (2010).
The Catalytic Function of Nonheme Iron (III) Complex for Hydrocarbon Oxidation.
  Bioinorg Chem Appl, (), 0.  
20091026 J.Seo, S.I.Kang, J.Y.Ryu, Y.J.Lee, K.D.Park, M.Kim, D.Won, H.Y.Park, J.H.Ahn, Y.Chong, R.A.Kanaly, J.Han, and H.G.Hur (2010).
Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.
  Appl Microbiol Biotechnol, 86, 1451-1462.  
20104327 M.Martinho, G.Blain, and F.Banse (2010).
Activation of dioxygen by a mononuclear non-heme iron complex: characterization of a Fe(III)(OOH) intermediate.
  Dalton Trans, 39, 1630-1634.  
20559823 M.Morikawa (2010).
Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: current state and variants.
  Appl Microbiol Biotechnol, 87, 1595-1603.  
  20714442 O.Kweon, S.J.Kim, J.P.Freeman, J.Song, S.Baek, and C.E.Cerniglia (2010).
Substrate Specificity and Structural Characteristics of the Novel Rieske Nonheme Iron Aromatic Ring-Hydroxylating Oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1.
  MBio, 1, 0.  
20361098 P.L.Holland (2010).
Metal-dioxygen and metal-dinitrogen complexes: where are the electrons?
  Dalton Trans, 39, 5415-5425.  
19776767 S.Iwai, B.Chai, W.J.Sul, J.R.Cole, S.A.Hashsham, and J.M.Tiedje (2010).
Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment.
  ISME J, 4, 279-285.  
19133805 A.M.Orville, G.T.Lountos, S.Finnegan, G.Gadda, and R.Prabhakar (2009).
Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase.
  Biochemistry, 48, 720-728.  
19278895 E.I.Solomon, S.D.Wong, L.V.Liu, A.Decker, and M.S.Chow (2009).
Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites.
  Curr Opin Chem Biol, 13, 99.  
18811643 F.Musat, A.Galushko, J.Jacob, F.Widdel, M.Kube, R.Reinhardt, H.Wilkes, B.Schink, and R.Rabus (2009).
Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.
  Environ Microbiol, 11, 209-219.  
19234303 J.K.Capyk, I.D'Angelo, N.C.Strynadka, and L.D.Eltis (2009).
Characterization of 3-ketosteroid 9{alpha}-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis.
  J Biol Chem, 284, 9937-9946.
PDB code: 2zyl
19360792 L.F.Pacios, V.M.Campos, I.Merino, and L.Gómez (2009).
Structures and thermodynamics of biphenyl dihydrodiol stereoisomers and their metabolites in the enzymatic degradation of arene xenobiotics.
  J Comput Chem, 30, 2420-2432.  
19464996 M.Tarasev, S.Pullela, and D.P.Ballou (2009).
Distal end of 105-125 loop--a putative reductase binding domain of phthalate dioxygenase.
  Arch Biochem Biophys, 487, 10-18.  
19081995 Y.Feng, C.Y.Ke, G.Xue, and L.Que (2009).
Bio-inspired arene cis-dihydroxylation by a non-haem iron catalyst modeling the action of naphthalene dioxygenase.
  Chem Commun (Camb), (), 50-52.  
18847220 C.R.Simmons, K.Krishnamoorthy, S.L.Granett, D.J.Schuller, J.E.Dominy, T.P.Begley, M.H.Stipanuk, and P.A.Karplus (2008).
A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.
  Biochemistry, 47, 11390-11392.
PDB code: 3eln
18277980 E.G.Kovaleva, and J.D.Lipscomb (2008).
Versatility of biological non-heme Fe(II) centers in oxygen activation reactions.
  Nat Chem Biol, 4, 186-193.  
19007887 J.D.Lipscomb (2008).
Mechanism of extradiol aromatic ring-cleaving dioxygenases.
  Curr Opin Struct Biol, 18, 644-649.  
18800132 L.Que, and W.B.Tolman (2008).
Biologically inspired oxidation catalysis.
  Nature, 455, 333-340.  
18804053 O.Kagami, K.Shindo, A.Kyojima, K.Takeda, H.Ikenaga, K.Furukawa, and N.Misawa (2008).
Protein engineering on biphenyl dioxygenase for conferring activity to convert 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin).
  J Biosci Bioeng, 106, 121-127.  
19020684 P.C.Bruijnincx, G.van Koten, and R.J.Klein Gebbink (2008).
Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.
  Chem Soc Rev, 37, 2716-2744.  
18286376 S.Boxhammer, S.Glaser, A.Kühl, A.K.Wagner, and C.L.Schmidt (2008).
Characterization of the recombinant Rieske [2Fe-2S] proteins HcaC and YeaW from E. coli.
  Biometals, 21, 459-467.  
18249197 T.D.Bugg, and S.Ramaswamy (2008).
Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations.
  Curr Opin Chem Biol, 12, 134-140.  
18189388 T.Ohta, S.Chakrabarty, J.D.Lipscomb, and E.I.Solomon (2008).
Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases.
  J Am Chem Soc, 130, 1601-1610.  
18019494 C.A.Joseph, and M.J.Maroney (2007).
Cysteine dioxygenase: structure and mechanism.
  Chem Commun (Camb), (), 3338-3349.  
17349044 D.J.Ferraro, E.N.Brown, C.L.Yu, R.E.Parales, D.T.Gibson, and S.Ramaswamy (2007).
Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1.
  BMC Struct Biol, 7, 10.
PDB codes: 2gbw 2gbx 2i7f
17446402 E.G.Kovaleva, and J.D.Lipscomb (2007).
Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates.
  Science, 316, 453-457.
PDB codes: 2ig9 2iga
17567087 E.G.Kovaleva, M.B.Neibergall, S.Chakrabarty, and J.D.Lipscomb (2007).
Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.
  Acc Chem Res, 40, 475-483.  
17269935 E.L.Ang, J.P.Obbard, and H.Zhao (2007).
Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.
  FEBS J, 274, 928-939.  
17299642 G.Anilkumar, B.Bitterlich, F.G.Gelalcha, M.K.Tse, and M.Beller (2007).
An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide.
  Chem Commun (Camb), (), 289-291.  
17451434 J.Jakoncic, Y.Jouanneau, C.Meyer, and V.Stojanoff (2007).
The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1.
  FEBS J, 274, 2470-2481.  
17401562 K.Shindo, Y.Shindo, T.Hasegawa, A.Osawa, O.Kagami, K.Furukawa, and N.Misawa (2007).
Synthesis of highly hydroxylated aromatics by evolved biphenyl dioxygenase and subsequent dihydrodiol dehydrogenase.
  Appl Microbiol Biotechnol, 75, 1063-1069.  
17526697 L.Gómez-Gil, P.Kumar, D.Barriault, J.T.Bolin, M.Sylvestre, and L.D.Eltis (2007).
Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme.
  J Bacteriol, 189, 5705-5715.  
17318598 M.A.Carrondo, I.Bento, P.M.Matias, and P.F.Lindley (2007).
Crystallographic evidence for dioxygen interactions with iron proteins.
  J Biol Inorg Chem, 12, 429-442.  
17567152 M.B.Neibergall, A.Stubna, Y.Mekmouche, E.Münck, and J.D.Lipscomb (2007).
Hydrogen peroxide dependent cis-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase.
  Biochemistry, 46, 8004-8016.  
17326618 M.P.Jensen, A.M.Payeras, A.T.Fiedler, M.Costas, J.Kaizer, A.Stubna, E.Münck, and L.Que (2007).
Kinetic analysis of the conversion of nonheme (alkylperoxo)iron(III) species to iron(IV) complexes.
  Inorg Chem, 46, 2398-2408.  
17131439 M.S.Seo, J.Y.Kim, J.Annaraj, Y.Kim, Y.M.Lee, S.J.Kim, J.Kim, and W.Nam (2007).
[Mn(tmc)(O2)]+: a side-on peroxido manganese(III) complex bearing a non-heme ligand.
  Angew Chem Int Ed Engl, 46, 377-380.  
17507985 P.F.Widboom, E.N.Fielding, Y.Liu, and S.D.Bruner (2007).
Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis.
  Nature, 447, 342-345.
PDB code: 2np9
17341076 S.Chakrabarty, R.N.Austin, D.Deng, J.T.Groves, and J.D.Lipscomb (2007).
Radical intermediates in monooxygenase reactions of rieske dioxygenases.
  J Am Chem Soc, 129, 3514-3515.  
16980501 D.J.Ferraro, A.L.Okerlund, J.C.Mowers, and S.Ramaswamy (2006).
Structural basis for regioselectivity and stereoselectivity of product formation by naphthalene 1,2-dioxygenase.
  J Bacteriol, 188, 6986-6994.
PDB codes: 2hmj 2hmk 2hml 2hmm 2hmn 2hmo
16391757 D.R.Boyd, and T.D.Bugg (2006).
Arene cis-dihydrodiol formation: from biology to application.
  Org Biomol Chem, 4, 181-192.  
16477023 H.Sugimoto, S.Oda, T.Otsuki, T.Hino, T.Yoshida, and Y.Shiro (2006).
Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase.
  Proc Natl Acad Sci U S A, 103, 2611-2616.
PDB codes: 2d0t 2d0u
16791638 I.Bento, M.A.Carrondo, and P.F.Lindley (2006).
Reduction of dioxygen by enzymes containing copper.
  J Biol Inorg Chem, 11, 539-547.  
16448512 K.Lee (2006).
p-hydroxylation reactions catalyzed by naphthalene dioxygenase.
  FEMS Microbiol Lett, 255, 316-320.  
16637091 M.R.Bukowski, P.Comba, A.Lienke, C.Limberg, C.Lopez de Laorden, R.Mas-Ballesté, M.Merz, and L.Que (2006).
Catalytic epoxidation and 1,2-dihydroxylation of olefins with bispidine-iron(II)/H2O2 systems.
  Angew Chem Int Ed Engl, 45, 3446-3449.  
16922496 M.Tarasev, A.Pinto, D.Kim, S.J.Elliott, and D.P.Ballou (2006).
The "bridging" aspartate 178 in phthalate dioxygenase facilitates interactions between the Rieske center and the iron(II)--mononuclear center.
  Biochemistry, 45, 10208-10216.  
17096444 P.D.Oldenburg, C.Y.Ke, A.A.Tipton, A.A.Shteinman, and L.Que (2006).
A structural and functional model for dioxygenases with a 2-His-1-carboxylate triad.
  Angew Chem Int Ed Engl, 45, 7975-7978.  
16871511 R.Mas-Ballesté, M.Costas, T.van den Berg, and L.Que (2006).
Ligand topology effects on olefin oxidations by bio-inspired [FeII(N2Py2)] catalysts.
  Chemistry, 12, 7489-7500.  
16777962 S.Eswaramoorthy, J.B.Bonanno, S.K.Burley, and S.Swaminathan (2006).
Mechanism of action of a flavin-containing monooxygenase.
  Proc Natl Acad Sci U S A, 103, 9832-9837.
PDB codes: 1vqw 2gv8 2gvc
15942729 A.Karlsson, J.V.Parales, R.E.Parales, D.T.Gibson, H.Eklund, and S.Ramaswamy (2005).
NO binding to naphthalene dioxygenase.
  J Biol Inorg Chem, 10, 483-489.
PDB codes: 1uuv 1uuw
15866914 B.G.Keenan, T.Leungsakul, B.F.Smets, M.A.Mori, D.E.Henderson, and T.K.Wood (2005).
Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407.
  J Bacteriol, 187, 3302-3310.  
15893671 B.M.Martins, T.Svetlitchnaia, and H.Dobbek (2005).
2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction.
  Structure, 13, 817-824.
PDB codes: 1z01 1z02 1z03
15746362 C.Bagnéris, R.Cammack, and J.R.Mason (2005).
Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida.
  Appl Environ Microbiol, 71, 1570-1580.  
16129597 D.Bourgeois, and A.Royant (2005).
Advances in kinetic protein crystallography.
  Curr Opin Struct Biol, 15, 538-547.  
15739015 E.V.Kudrik, A.Theodoridis, R.van Eldik, and S.V.Makarov (2005).
Kinetics and mechanism of the Co(II)-assisted oxidation of thioureas by dioxygen.
  Dalton Trans, (), 1117-1122.  
16158103 J.Annaraj, Y.Suh, M.S.Seo, S.O.Kim, and W.Nam (2005).
Mononuclear nonheme ferric-peroxo complex in aldehyde deformylation.
  Chem Commun (Camb), (), 4529-4531.  
15893657 J.D.Lipscomb, and B.M.Hoffman (2005).
Allosteric control of O2 reactivity in Rieske oxygenases.
  Structure, 13, 684-685.  
16151125 J.Han, S.Y.Kim, J.Jung, Y.Lim, J.H.Ahn, S.I.Kim, and H.G.Hur (2005).
Epoxide formation on the aromatic B ring of flavanone by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes KF707.
  Appl Environ Microbiol, 71, 5354-5361.  
15739104 K.D.Koehntop, J.P.Emerson, and L.Que (2005).
The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes.
  J Biol Inorg Chem, 10, 87-93.  
16237006 L.Gakhar, Z.A.Malik, C.C.Allen, D.A.Lipscomb, M.J.Larkin, and S.Ramaswamy (2005).
Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase.
  J Bacteriol, 187, 7222-7231.
PDB codes: 2b1x 2b24
16317455 M.L.Neidig, and E.I.Solomon (2005).
Structure-function correlations in oxygen activating non-heme iron enzymes.
  Chem Commun (Camb), (), 5843-5863.  
16000792 R.E.Parales, R.Huang, C.L.Yu, J.V.Parales, F.K.Lee, D.J.Lessner, M.M.Ivkovic-Jensen, W.Liu, R.Friemann, S.Ramaswamy, and D.T.Gibson (2005).
Purification, characterization, and crystallization of the components of the nitrobenzene and 2-nitrotoluene dioxygenase enzyme systems.
  Appl Environ Microbiol, 71, 3806-3814.  
16028295 T.Leungsakul, B.G.Keenan, H.Yin, B.F.Smets, and T.K.Wood (2005).
Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation.
  Biotechnol Bioeng, 92, 416-426.  
15774891 X.Dong, S.Fushinobu, E.Fukuda, T.Terada, S.Nakamura, K.Shimizu, H.Nojiri, T.Omori, H.Shoun, and T.Wakagi (2005).
Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01.
  J Bacteriol, 187, 2483-2490.
PDB code: 1wql
15184115 B.G.Keenan, T.Leungsakul, B.F.Smets, and T.K.Wood (2004).
Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone.
  Appl Environ Microbiol, 70, 3222-3231.  
15104106 L.P.Wackett (2004).
Stable isotope probing in biodegradation research.
  Trends Biotechnol, 22, 153-154.  
15560776 P.Hlavica (2004).
Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
  Eur J Biochem, 271, 4335-4360.  
14617661 M.Zielinski, S.Kahl, H.J.Hecht, and B.Hofer (2003).
Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction.
  J Bacteriol, 185, 6976-6980.  
14622009 Z.M.Beharry, D.M.Eby, E.D.Coulter, R.Viswanathan, E.L.Neidle, R.S.Phillips, and D.M.Kurtz (2003).
Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase.
  Biochemistry, 42, 13625-13636.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer