spacer
spacer

PDBsum entry 1nms

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Apoptosis, hydrolase PDB id
1nms

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
240 a.a. *
Ligands
161 ×2
Waters ×587
* Residue conservation analysis
PDB id:
1nms
Name: Apoptosis, hydrolase
Title: Caspase-3 tethered to irreversible inhibitor
Structure: Caspase-3. Chain: a, b. Fragment: large subunit. Synonym: apopain. Cysteine protease cpp32. Yama protein. Cpp-32. Casp-3. Srebp cleavage activity 1. Sca-1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
1.70Å     R-factor:   0.153     R-free:   0.183
Authors: D.A.Erlanson,J.Lam,C.Wiesmann,T.N.Luong,R.L.Simmons,W.L.Delano, I.C.Choong,W.M.Flanagan,D.Lee,T.O'Brian
Key ref:
D.A.Erlanson et al. (2003). In situ assembly of enzyme inhibitors using extended tethering. Nat Biotechnol, 21, 308-314. PubMed id: 12563278 DOI: 10.1038/nbt786
Date:
10-Jan-03     Release date:   11-Mar-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P42574  (CASP3_HUMAN) -  Caspase-3 from Homo sapiens
Seq:
Struc:
277 a.a.
240 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.4.22.56  - caspase-3.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nbt786 Nat Biotechnol 21:308-314 (2003)
PubMed id: 12563278  
 
 
In situ assembly of enzyme inhibitors using extended tethering.
D.A.Erlanson, J.W.Lam, C.Wiesmann, T.N.Luong, R.L.Simmons, W.L.DeLano, I.C.Choong, M.T.Burdett, W.M.Flanagan, D.Lee, E.M.Gordon, T.O'Brien.
 
  ABSTRACT  
 
Cysteine aspartyl protease-3 (caspase-3) is a mediator of apoptosis and a therapeutic target for a wide range of diseases. Using a dynamic combinatorial technology, 'extended tethering', we identified unique nonpeptidic inhibitors for this enzyme. Extended tethering allowed the identification of ligands that bind to discrete regions of caspase-3 and also helped direct the assembly of these ligands into small-molecule inhibitors. We first designed a small-molecule 'extender' that irreversibly alkylates the cysteine residue of caspase-3 and also contains a thiol group. The modified protein was then screened against a library of disulfide-containing small-molecule fragments. Mass-spectrometry was used to identify ligands that bind noncovalently to the protein and that also form a disulfide linkage with the extender. Linking the selected fragments with binding elements from the extenders generates reversible, tight-binding molecules that are druglike and distinct from known inhibitors. One molecule derived from this approach inhibited apoptosis in cells.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Schematic illustration of the extended tethering technique.
Figure 4.
Figure 4. Evolution of selected fragments into reversible inhibitors of caspase-3. (A) SAR of the reversible (aldehyde) inhibitors derived from the selected fragments shown in Figure 2A. (B) Superposition of caspase-3 modified with extender A and the salicylic acid sulfonamide tethering hit (fragment A; gray) and caspase-3 bound to an irreversible version (in which the aldehyde was replaced with an arylacyloxymethyl ketone) of compound 4 (salmon). The arrow indicates a minor structural accommodation observed in the S4 region between the tether and the rigidified inhibitor.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Biotechnol (2003, 21, 308-314) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21459573 D.A.Erlanson, J.W.Arndt, M.T.Cancilla, K.Cao, R.A.Elling, N.English, J.Friedman, S.K.Hansen, C.Hession, I.Joseph, G.Kumaravel, W.C.Lee, K.E.Lind, R.S.McDowell, K.Miatkowski, C.Nguyen, T.B.Nguyen, S.Park, N.Pathan, D.M.Penny, M.J.Romanowski, D.Scott, L.Silvian, R.L.Simmons, B.T.Tangonan, W.Yang, and L.Sun (2011).
Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery.
  Bioorg Med Chem Lett, 21, 3078-3083.
PDB codes: 3pwy 3qc4
21104718 L.Azéma, K.Bathany, and B.Rayner (2010).
2'-O-Appended polyamines that increase triple-helix-forming oligonucleotide affinity are selected by dynamic combinatorial chemistry.
  Chembiochem, 11, 2513-2516.  
20811381 M.Drag, and G.S.Salvesen (2010).
Emerging principles in protease-based drug discovery.
  Nat Rev Drug Discov, 9, 690-701.  
20309485 S.K.Mamidyala, and M.G.Finn (2010).
In situ click chemistry: probing the binding landscapes of biological molecules.
  Chem Soc Rev, 39, 1252-1261.  
20229565 S.Melkko, L.Mannocci, C.E.Dumelin, A.Villa, R.Sommavilla, Y.Zhang, M.G.Grütter, N.Keller, L.Jermutus, R.H.Jackson, J.Scheuermann, and D.Neri (2010).
Isolation of a small-molecule inhibitor of the antiapoptotic protein Bcl-xL from a DNA-encoded chemical library.
  ChemMedChem, 5, 584-590.  
19827080 D.E.Scott, G.J.Dawes, M.Ando, C.Abell, and A.Ciulli (2009).
A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry.
  Chembiochem, 10, 2772-2779.
PDB codes: 3iob 3ioc 3iod 3ioe
19679363 M.F.Schmidt, and J.Rademann (2009).
Dynamic template-assisted strategies in fragment-based drug discovery.
  Trends Biotechnol, 27, 512-521.  
18321097 H.Ji, B.Z.Stanton, J.Igarashi, H.Li, P.Martásek, L.J.Roman, T.L.Poulos, and R.B.Silverman (2008).
Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors.
  J Am Chem Soc, 130, 3900-3914.
PDB codes: 3b3m 3b3n
18292873 S.L.Ng, P.Y.Yang, K.Y.Chen, R.Srinivasan, and S.Q.Yao (2008).
"Click" synthesis of small-molecule inhibitors targeting caspases.
  Org Biomol Chem, 6, 844-847.  
17609747 C.J.Krusemark, and P.J.Belshaw (2007).
Covalent labelling of fusion proteins in live cells via an engineered receptor-ligand pair.
  Org Biomol Chem, 5, 2201-2204.  
17154429 J.N.Rybak, E.Trachsel, J.Scheuermann, and D.Neri (2007).
Ligand-Based Vascular Targeting of Disease.
  ChemMedChem, 2, 22-40.  
17406232 C.Roesli, D.Neri, and J.N.Rybak (2006).
In vivo protein biotinylation and sample preparation for the proteomic identification of organ- and disease-specific antigens accessible from the vasculature.
  Nat Protoc, 1, 192-199.  
17084612 D.A.Erlanson (2006).
Fragment-based lead discovery: a chemical update.
  Curr Opin Biotechnol, 17, 643-652.  
16846802 G.M.Keseru, and G.M.Makara (2006).
Hit discovery and hit-to-lead approaches.
  Drug Discov Today, 11, 741-748.  
16404760 P.T.Daniel, U.Koert, and J.Schuppan (2006).
Apoptolidin: induction of apoptosis by a natural product.
  Angew Chem Int Ed Engl, 45, 872-893.  
15925537 E.R.Zartler, and M.J.Shapiro (2005).
Fragonomics: fragment-based drug discovery.
  Curr Opin Chem Biol, 9, 366-370.  
15565741 J.D.Cheeseman, A.D.Corbett, J.L.Gleason, and R.J.Kazlauskas (2005).
Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery.
  Chemistry, 11, 1708-1716.  
15389851 K.F.Geoghegan, and M.A.Kelly (2005).
Biochemical applications of mass spectrometry in pharmaceutical drug discovery.
  Mass Spectrom Rev, 24, 347-366.  
15665817 U.Fischer, and K.Schulze-Osthoff (2005).
Apoptosis-based therapies and drug targets.
  Cell Death Differ, 12, 942-961.  
15139811 D.A.Erlanson, J.A.Wells, and A.C.Braisted (2004).
Tethering: fragment-based drug discovery.
  Annu Rev Biophys Biomol Struct, 33, 199-223.  
15288250 D.A.Erlanson, and S.K.Hansen (2004).
Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly.
  Curr Opin Chem Biol, 8, 399-406.  
15286733 D.C.Rees, M.Congreve, C.W.Murray, and R.Carr (2004).
Fragment-based lead discovery.
  Nat Rev Drug Discov, 3, 660-672.  
15314233 J.A.Hardy, J.Lam, J.T.Nguyen, T.O'Brien, and J.A.Wells (2004).
Discovery of an allosteric site in the caspases.
  Proc Natl Acad Sci U S A, 101, 12461-12466.
PDB codes: 1shj 1shl
14970175 M.Alvarado-Kristensson, F.Melander, K.Leandersson, L.Rönnstrand, C.Wernstedt, and T.Andersson (2004).
p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils.
  J Exp Med, 199, 449-458.  
15338571 N.C.Meisner, M.Hintersteiner, V.Uhl, T.Weidemann, M.Schmied, H.Gstach, and M.Auer (2004).
The chemical hunt for the identification of drugable targets.
  Curr Opin Chem Biol, 8, 424-431.  
14984766 P.Alessi, C.Ebbinghaus, and D.Neri (2004).
Molecular targeting of angiogenesis.
  Biochim Biophys Acta, 1654, 39-49.  
14757532 R.Liu, C.Y.Hsieh, and K.S.Lam (2004).
New approaches in identifying drugs to inactivate oncogene products.
  Semin Cancer Biol, 14, 13-21.  
15300826 T.Berg (2004).
Use of "tethering" for the identification of a small molecule that binds to a dynamic hot spot on the interleukin-2 surface.
  Chembiochem, 5, 1051-1053.  
15599912 V.P.Mocharla, B.Colasson, L.V.Lee, S.Röper, K.B.Sharpless, C.H.Wong, and H.C.Kolb (2004).
In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II.
  Angew Chem Int Ed Engl, 44, 116-120.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer