 |
PDBsum entry 1nip
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.1.18.6.1
- nitrogenase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
Nitrogenase
|
 |
 |
 |
 |
 |
Reaction:
|
 |
N2 + 8 reduced [2Fe-2S]-[ferredoxin] + 16 ATP + 16 H2O = H2 + 8 oxidized [2Fe-2S]-[ferredoxin] + 2 NH4+ + 16 ADP + 16 phosphate + 6 H+
|
 |
 |
 |
 |
 |
N2
|
+
|
8
×
reduced [2Fe-2S]-[ferredoxin]
|
+
|
16
×
ATP
|
+
|
16
×
H2O
|
=
|
H2
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
8
×
oxidized [2Fe-2S]-[ferredoxin]
|
+
|
2
×
NH4(+)
|
+
|
16
×
ADP
|
+
|
16
×
phosphate
|
+
|
6
×
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Iron-sulfur; Vanadium cation or Mo cation
|
 |
 |
 |
 |
 |
Iron-sulfur
|
Vanadium cation
|
or
|
Mo cation
|
|
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
257:1653-1659
(1992)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
|
|
M.M.Georgiadis,
H.Komiya,
P.Chakrabarti,
D.Woo,
J.J.Kornuc,
D.C.Rees.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The nitrogenase enzyme system catalyzes the ATP (adenosine
triphosphate)-dependent reduction of dinitrogen to ammonia during the process of
nitrogen fixation. Nitrogenase consists of two proteins: the iron (Fe)-protein,
which couples hydrolysis of ATP to electron transfer, and the molybdenum-iron
(MoFe)-protein, which contains the dinitrogen binding site. In order to address
the role of ATP in nitrogen fixation, the crystal structure of the nitrogenase
Fe-protein from Azotobacter vinelandii has been determined at 2.9 angstrom (A)
resolution. Fe-protein is a dimer of two identical subunits that coordinate a
single 4Fe:4S cluster. Each subunit folds as a single alpha/beta type domain,
which together symmetrically ligate the surface exposed 4Fe:4S cluster through
two cysteines from each subunit. A single bound ADP (adenosine diphosphate)
molecule is located in the interface region between the two subunits. Because
the phosphate groups of this nucleotide are approximately 20 A from the 4Fe:4S
cluster, it is unlikely that ATP hydrolysis and electron transfer are directly
coupled. Instead, it appears that interactions between the nucleotide and
cluster sites must be indirectly coupled by allosteric changes occurring at the
subunit interface. The coupling between protein conformation and nucleotide
hydrolysis in Fe-protein exhibits general similarities to the H-Ras p21 and recA
proteins that have been recently characterized structurally. The Fe-protein
structure may be relevant to the functioning of other biochemical
energy-transducing systems containing two nucleotide-binding sites, including
membrane transport proteins.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.Rupnik,
Y.Hu,
A.W.Fay,
M.W.Ribbe,
and
B.J.Hales
(2011).
Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of NifEN-bound precursor and "FeMoco".
|
| |
J Biol Inorg Chem,
16,
325-332.
|
 |
|
|
|
|
 |
A.W.Fay,
M.A.Blank,
J.M.Yoshizawa,
C.C.Lee,
J.A.Wiig,
Y.Hu,
K.O.Hodgson,
B.Hedman,
and
M.W.Ribbe
(2010).
Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
|
| |
Dalton Trans,
39,
3124-3130.
|
 |
|
|
|
|
 |
C.Reinbothe,
M.El Bakkouri,
F.Buhr,
N.Muraki,
J.Nomata,
G.Kurisu,
Y.Fujita,
and
S.Reinbothe
(2010).
Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction.
|
| |
Trends Plant Sci,
15,
614-624.
|
 |
|
|
|
|
 |
D.W.Mulder,
E.S.Boyd,
R.Sarma,
R.K.Lange,
J.A.Endrizzi,
J.B.Broderick,
and
J.W.Peters
(2010).
Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG).
|
| |
Nature,
465,
248-251.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.M.Lery,
M.Bitar,
M.G.Costa,
S.C.Rössle,
and
P.M.Bisch
(2010).
Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.
|
| |
BMC Genomics,
11,
S7.
|
 |
|
|
|
|
 |
V.Amarelle,
U.Koziol,
F.Rosconi,
F.Noya,
M.R.O'Brian,
and
E.Fabiano
(2010).
A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti.
|
| |
Microbiology,
156,
1873-1882.
|
 |
|
|
|
|
 |
Y.Hu,
A.W.Fay,
C.C.Lee,
J.A.Wiig,
and
M.W.Ribbe
(2010).
Dual functions of NifEN: insights into the evolution and mechanism of nitrogenase.
|
| |
Dalton Trans,
39,
2964-2971.
|
 |
|
|
|
|
 |
Y.Hu,
and
M.W.Ribbe
(2010).
Decoding the nitrogenase mechanism: the homologue approach.
|
| |
Acc Chem Res,
43,
475-484.
|
 |
|
|
|
|
 |
A.Mateja,
A.Szlachcic,
M.E.Downing,
M.Dobosz,
M.Mariappan,
R.S.Hegde,
and
R.J.Keenan
(2009).
The structural basis of tail-anchored membrane protein recognition by Get3.
|
| |
Nature,
461,
361-366.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.J.Suloway,
J.W.Chartron,
M.Zaslaver,
and
W.M.Clemons
(2009).
Model for eukaryotic tail-anchored protein binding based on the structure of Get3.
|
| |
Proc Natl Acad Sci U S A,
106,
14849-14854.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Wätzlich,
M.J.Bröcker,
F.Uliczka,
M.Ribbe,
S.Virus,
D.Jahn,
and
J.Moser
(2009).
Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis.
|
| |
J Biol Chem,
284,
15530-15540.
|
 |
|
|
|
|
 |
G.Bozkurt,
G.Stjepanovic,
F.Vilardi,
S.Amlacher,
K.Wild,
G.Bange,
V.Favaloro,
K.Rippe,
E.Hurt,
B.Dobberstein,
and
I.Sinning
(2009).
Structural insights into tail-anchored protein binding and membrane insertion by Get3.
|
| |
Proc Natl Acad Sci U S A,
106,
21131-21136.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Schwarz,
R.R.Mendel,
and
M.W.Ribbe
(2009).
Molybdenum cofactors, enzymes and pathways.
|
| |
Nature,
460,
839-847.
|
 |
|
|
|
|
 |
J.B.Glass,
F.Wolfe-Simon,
and
A.D.Anbar
(2009).
Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.
|
| |
Geobiology,
7,
100-123.
|
 |
|
|
|
|
 |
J.C.Fontecilla-Camps,
P.Amara,
C.Cavazza,
Y.Nicolet,
and
A.Volbeda
(2009).
Structure-function relationships of anaerobic gas-processing metalloenzymes.
|
| |
Nature,
460,
814-822.
|
 |
|
|
|
|
 |
L.C.Seefeldt,
B.M.Hoffman,
and
D.R.Dean
(2009).
Mechanism of Mo-dependent nitrogenase.
|
| |
Annu Rev Biochem,
78,
701-722.
|
 |
|
|
|
|
 |
P.C.Hallenbeck,
G.N.George,
R.C.Prince,
and
R.N.Thorneley
(2009).
Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster.
|
| |
J Biol Inorg Chem,
14,
673-682.
|
 |
|
|
|
|
 |
D.A.Betancourt,
T.M.Loveless,
J.W.Brown,
and
P.E.Bishop
(2008).
Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments.
|
| |
Appl Environ Microbiol,
74,
3471-3480.
|
 |
|
|
|
|
 |
J.A.Hernandez,
L.Curatti,
C.P.Aznar,
Z.Perova,
R.D.Britt,
and
L.M.Rubio
(2008).
Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor.
|
| |
Proc Natl Acad Sci U S A,
105,
11679-11684.
|
 |
|
|
|
|
 |
J.Petersen,
C.J.Mitchell,
K.Fisher,
and
D.J.Lowe
(2008).
Structural basis for VO(2+)-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe-protein identified by ENDOR spectroscopy.
|
| |
J Biol Inorg Chem,
13,
637-650.
|
 |
|
|
|
|
 |
K.Bych,
S.Kerscher,
D.J.Netz,
A.J.Pierik,
K.Zwicker,
M.A.Huynen,
R.Lill,
U.Brandt,
and
J.Balk
(2008).
The iron-sulphur protein Ind1 is required for effective complex I assembly.
|
| |
EMBO J,
27,
1736-1746.
|
 |
|
|
|
|
 |
L.M.Rubio,
and
P.W.Ludden
(2008).
Biosynthesis of the iron-molybdenum cofactor of nitrogenase.
|
| |
Annu Rev Microbiol,
62,
93.
|
 |
|
|
|
|
 |
M.Hans,
W.Buckel,
and
E.Bill
(2008).
Spectroscopic evidence for an all-ferrous [4Fe-4S]0 cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans.
|
| |
J Biol Inorg Chem,
13,
563-574.
|
 |
|
|
|
|
 |
Q.Cheng
(2008).
Perspectives in biological nitrogen fixation research.
|
| |
J Integr Plant Biol,
50,
786-798.
|
 |
|
|
|
|
 |
B.M.Barney,
J.McClead,
D.Lukoyanov,
M.Laryukhin,
T.C.Yang,
D.R.Dean,
B.M.Hoffman,
and
L.C.Seefeldt
(2007).
Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction.
|
| |
Biochemistry,
46,
6784-6794.
|
 |
|
|
|
|
 |
C.M.Hester,
and
J.Lutkenhaus
(2007).
Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation.
|
| |
Proc Natl Acad Sci U S A,
104,
20326-20331.
|
 |
|
|
|
|
 |
C.R.Staples,
S.Lahiri,
J.Raymond,
L.Von Herbulis,
B.Mukhophadhyay,
and
R.E.Blankenship
(2007).
Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii.
|
| |
J Bacteriol,
189,
7392-7398.
|
 |
|
|
|
|
 |
P.C.Dos Santos,
S.M.Mayer,
B.M.Barney,
L.C.Seefeldt,
and
D.R.Dean
(2007).
Alkyne substrate interaction within the nitrogenase MoFe protein.
|
| |
J Inorg Biochem,
101,
1642-1648.
|
 |
|
|
|
|
 |
F.Rosconi,
E.M.Souza,
F.O.Pedrosa,
R.A.Platero,
C.González,
M.González,
S.Batista,
P.R.Gill,
and
E.R.Fabiano
(2006).
Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.
|
| |
FEMS Microbiol Lett,
258,
214-219.
|
 |
|
|
|
|
 |
H.Tsuihiji,
Y.Yamazaki,
H.Kamikubo,
Y.Imamoto,
and
M.Kataoka
(2006).
Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.
|
| |
J Biosci Bioeng,
101,
263-270.
|
 |
|
|
|
|
 |
J.B.Howard,
and
D.C.Rees
(2006).
How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
|
| |
Proc Natl Acad Sci U S A,
103,
17088-17093.
|
 |
|
|
|
|
 |
M.Castruita,
M.Saito,
P.C.Schottel,
L.A.Elmegreen,
S.Myneni,
E.I.Stiefel,
and
F.M.Morel
(2006).
Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum.
|
| |
Appl Environ Microbiol,
72,
2918-2924.
|
 |
|
|
|
|
 |
N.Gavini,
S.Tungtur,
and
L.Pulakat
(2006).
Peptidyl-prolyl cis/trans isomerase-independent functional NifH mutant of Azotobacter vinelandii.
|
| |
J Bacteriol,
188,
6020-6025.
|
 |
|
|
|
|
 |
Y.Hu,
M.C.Corbett,
A.W.Fay,
J.A.Webber,
K.O.Hodgson,
B.Hedman,
and
M.W.Ribbe
(2006).
Nitrogenase Fe protein: A molybdate/homocitrate insertase.
|
| |
Proc Natl Acad Sci U S A,
103,
17125-17130.
|
 |
|
|
|
|
 |
J.Kästner,
and
P.E.Blöchl
(2005).
Towards an understanding of the workings of nitrogenase from DFT calculations.
|
| |
Chemphyschem,
6,
1724-1726.
|
 |
|
|
|
|
 |
J.Kästner,
S.Hemmen,
and
P.E.Blöchl
(2005).
Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase.
|
| |
J Chem Phys,
123,
074306.
|
 |
|
|
|
|
 |
L.M.Rubio,
and
P.W.Ludden
(2005).
Maturation of nitrogenase: a biochemical puzzle.
|
| |
J Bacteriol,
187,
405-414.
|
 |
|
|
|
|
 |
Y.Hu,
A.W.Fay,
and
M.W.Ribbe
(2005).
Identification of a nitrogenase FeMo cofactor precursor on NifEN complex.
|
| |
Proc Natl Acad Sci U S A,
102,
3236-3241.
|
 |
|
|
|
|
 |
H.Zhou,
and
J.Lutkenhaus
(2004).
The switch I and II regions of MinD are required for binding and activating MinC.
|
| |
J Bacteriol,
186,
1546-1555.
|
 |
|
|
|
|
 |
L.M.Rubio,
S.W.Singer,
and
P.W.Ludden
(2004).
Purification and characterization of NafY (apodinitrogenase gamma subunit) from Azotobacter vinelandii.
|
| |
J Biol Chem,
279,
19739-19746.
|
 |
|
|
|
|
 |
G.Klassen,
F.de Oliveira Pedrosa,
E.M.de Souza,
M.G.Yates,
and
L.U.Rigo
(2003).
Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.
|
| |
FEMS Microbiol Lett,
224,
255-259.
|
 |
|
|
|
|
 |
J.Lutkenhaus,
and
M.Sundaramoorthy
(2003).
MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation.
|
| |
Mol Microbiol,
48,
295-303.
|
 |
|
|
|
|
 |
Z.Hu,
C.Saez,
and
J.Lutkenhaus
(2003).
Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE.
|
| |
J Bacteriol,
185,
196-203.
|
 |
|
|
|
|
 |
C.Ehlers,
K.Veit,
G.Gottschalk,
and
R.A.Schmitz
(2002).
Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1.
|
| |
Archaea,
1,
143-150.
|
 |
|
|
|
|
 |
D.C.Rees
(2002).
Great metalloclusters in enzymology.
|
| |
Annu Rev Biochem,
71,
221-246.
|
 |
|
|
|
|
 |
J.Easter,
and
J.W.Gober
(2002).
ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities.
|
| |
Mol Cell,
10,
427-434.
|
 |
|
|
|
|
 |
J.Petersen,
K.Fisher,
C.J.Mitchell,
and
D.J.Lowe
(2002).
Multiple inequivalent metal-nucleotide coordination environments in the presence of the VO2+-inhibited nitrogenase iron protein: pH-dependent structural rearrangements at the nucleotide binding site.
|
| |
Biochemistry,
41,
13253-13263.
|
 |
|
|
|
|
 |
N.Petrova,
L.Gigova,
and
P.Venkov
(2002).
Dimerization of Rhizobium meliloti NifH protein in Saccharomyces cerevisiae cells requires simultaneous expression of NifM protein.
|
| |
Int J Biochem Cell Biol,
34,
33-42.
|
 |
|
|
|
|
 |
C.L.Drennan,
J.Heo,
M.D.Sintchak,
E.Schreiter,
and
P.W.Ludden
(2001).
Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase.
|
| |
Proc Natl Acad Sci U S A,
98,
11973-11978.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Fung,
J.Y.Bouet,
and
B.E.Funnell
(2001).
Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis.
|
| |
EMBO J,
20,
4901-4911.
|
 |
|
|
|
|
 |
H.Chiu,
J.W.Peters,
W.N.Lanzilotta,
M.J.Ryle,
L.C.Seefeldt,
J.B.Howard,
and
D.C.Rees
(2001).
MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein.
|
| |
Biochemistry,
40,
641-650.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Hayashi,
T.Oyama,
and
K.Morikawa
(2001).
Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus.
|
| |
EMBO J,
20,
1819-1828.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Christiansen,
D.R.Dean,
and
L.C.Seefeldt
(2001).
MECHANISTIC FEATURES OF THE MO-CONTAINING NITROGENASE.
|
| |
Annu Rev Plant Physiol Plant Mol Biol,
52,
269-295.
|
 |
|
|
|
|
 |
K.Fisher,
W.E.Newton,
and
D.J.Lowe
(2001).
Electron paramagnetic resonance analysis of different Azotobacter vinelandii nitrogenase MoFe-protein conformations generated during enzyme turnover: evidence for S = 3/2 spin states from reduced MoFe-protein intermediates.
|
| |
Biochemistry,
40,
3333-3339.
|
 |
|
|
|
|
 |
M.Sørlie,
J.Christiansen,
B.J.Lemon,
J.W.Peters,
D.R.Dean,
and
B.J.Hales
(2001).
Mechanistic features and structure of the nitrogenase alpha-Gln195 MoFe protein.
|
| |
Biochemistry,
40,
1540-1549.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Strop,
P.M.Takahara,
H.Chiu,
H.C.Angove,
B.K.Burgess,
and
D.C.Rees
(2001).
Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii.
|
| |
Biochemistry,
40,
651-656.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.W.Miller,
R.R.Eady,
S.A.Fairhurst,
C.A.Gormal,
and
B.E.Smith
(2001).
Transition state complexes of the Klebsiella pneumoniae nitrogenase proteins. Spectroscopic properties of aluminium fluoride-stabilized and beryllium fluoride-stabilized MgADP complexes reveal conformational differences of the Fe protein.
|
| |
Eur J Biochem,
268,
809-818.
|
 |
|
|
|
|
 |
S.Siemann,
K.Schneider,
K.Behrens,
A.Knöchel,
W.Klipp,
and
A.Müller
(2001).
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.
|
| |
Eur J Biochem,
268,
1940-1952.
|
 |
|
|
|
|
 |
Y.Ma,
and
P.W.Ludden
(2001).
Role of the dinitrogenase reductase arginine 101 residue in dinitrogenase reductase ADP-ribosyltransferase binding, NAD binding, and cleavage.
|
| |
J Bacteriol,
183,
250-256.
|
 |
|
|
|
|
 |
C.M.Halbleib,
Y.Zhang,
G.P.Roberts,
and
P.W.Ludden
(2000).
Effects of perturbations of the nitrogenase electron transfer chain on reversible ADP-ribosylation of nitrogenase Fe protein in Klebsiella pneumoniae strains bearing the Rhodospirillum rubrum dra operon.
|
| |
J Bacteriol,
182,
3681-3687.
|
 |
|
|
|
|
 |
D.C.Rees,
and
J.B.Howard
(2000).
Nitrogenase: standing at the crossroads.
|
| |
Curr Opin Chem Biol,
4,
559-566.
|
 |
|
|
|
|
 |
J.L.Johnson,
A.C.Nyborg,
P.E.Wilson,
A.M.Tolley,
F.R.Nordmeyer,
and
G.D.Watt
(2000).
Mechanistic interpretation of the dilution effect for Azotobacter vinelandii and Clostridium pasteurianum nitrogenase catalysis.
|
| |
Biochim Biophys Acta,
1543,
36-46.
|
 |
|
|
|
|
 |
J.M.Chan,
W.Wu,
D.R.Dean,
and
L.C.Seefeldt
(2000).
Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis.
|
| |
Biochemistry,
39,
7221-7228.
|
 |
|
|
|
|
 |
K.A.Denessiouk,
and
M.S.Johnson
(2000).
When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families.
|
| |
Proteins,
38,
310-326.
|
 |
|
|
|
|
 |
K.Fisher,
M.J.Dilworth,
C.H.Kim,
and
W.E.Newton
(2000).
Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
|
| |
Biochemistry,
39,
2970-2979.
|
 |
|
|
|
|
 |
K.Fisher,
M.J.Dilworth,
C.H.Kim,
and
W.E.Newton
(2000).
Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
|
| |
Biochemistry,
39,
10855-10865.
|
 |
|
|
|
|
 |
L.Zou,
M.C.Baguinon,
X.Guo,
S.Y.Guo,
Y.Yu,
and
L.C.Davis
(2000).
Interaction with magnesium and ADP stabilizes both components of nitrogenase from Klebsiella pneumoniae against urea denaturation.
|
| |
Protein Sci,
9,
121-128.
|
 |
|
|
|
|
 |
L.Zou,
S.Y.Guo,
and
L.C.Davis
(2000).
Using electrophoresis to observe the interaction of nitrogenase with ions.
|
| |
Electrophoresis,
21,
2932-2939.
|
 |
|
|
|
|
 |
M.Hans,
W.Buckel,
and
E.Bill
(2000).
The iron-sulfur clusters in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Biochemical and spectroscopic investigations.
|
| |
Eur J Biochem,
267,
7082-7093.
|
 |
|
|
|
|
 |
S.B.Jang,
L.C.Seefeldt,
and
J.W.Peters
(2000).
Insights into nucleotide signal transduction in nitrogenase: structure of an iron protein with MgADP bound.
|
| |
Biochemistry,
39,
14745-14752.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.K.Grunwald,
M.J.Ryle,
W.N.Lanzilotta,
and
P.W.Ludden
(2000).
ADP-Ribosylation of variants of Azotobacter vinelandii dinitrogenase reductase by Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyltransferase.
|
| |
J Bacteriol,
182,
2597-2603.
|
 |
|
|
|
|
 |
T.A.Clarke,
S.Maritano,
and
R.R.Eady
(2000).
Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
|
| |
Biochemistry,
39,
11434-11440.
|
 |
|
|
|
|
 |
T.Zhou,
S.Radaev,
B.P.Rosen,
and
D.L.Gatti
(2000).
Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump.
|
| |
EMBO J,
19,
4838-4845.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Leartsakulpanich,
M.L.Antonkine,
and
J.G.Ferry
(2000).
Site-specific mutational analysis of a novel cysteine motif proposed to ligate the 4Fe-4S cluster in the iron-sulfur flavoprotein of the thermophilic methanoarchaeon Methanosarcina thermophila.
|
| |
J Bacteriol,
182,
5309-5316.
|
 |
|
|
|
|
 |
J.D.Quisel,
D.C.Lin,
and
A.D.Grossman
(1999).
Control of development by altered localization of a transcription factor in B. subtilis.
|
| |
Mol Cell,
4,
665-672.
|
 |
|
|
|
|
 |
J.G.Grossman,
S.S.Hasnain,
F.K.Yousafzai,
B.E.Smith,
R.R.Eady,
H.Schindelin,
C.Kisker,
J.G.Howard,
H.Tsuruta,
J.Muller,
and
D.C.Rees
(1999).
Comparing crystallographic and solution structures of nitrogenase complexes.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
727-728.
|
 |
|
|
|
|
 |
J.M.Chan,
J.Christiansen,
D.R.Dean,
and
L.C.Seefeldt
(1999).
Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.
|
| |
Biochemistry,
38,
5779-5785.
|
 |
|
|
|
|
 |
M.Hans,
J.Sievers,
U.Müller,
E.Bill,
J.A.Vorholt,
D.Linder,
and
W.Buckel
(1999).
2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum.
|
| |
Eur J Biochem,
265,
404-414.
|
 |
|
|
|
|
 |
S.Lei,
L.Pulakat,
and
N.Gavini
(1999).
Genetic analysis of nif regulatory genes by utilizing the yeast two-hybrid system detected formation of a NifL-NifA complex that is implicated in regulated expression of nif genes.
|
| |
J Bacteriol,
181,
6535-6539.
|
 |
|
|
|
|
 |
W.N.Lanzilotta,
V.D.Parker,
and
L.C.Seefeldt
(1999).
Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein.
|
| |
Biochim Biophys Acta,
1429,
411-421.
|
 |
|
|
|
|
 |
D.M.Lawson,
C.E.Williams,
L.A.Mitchenall,
and
R.N.Pau
(1998).
Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.
|
| |
Structure,
6,
1529-1539.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.M.Cameron,
and
B.J.Hales
(1998).
Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
|
| |
Biochemistry,
37,
9449-9456.
|
 |
|
|
|
|
 |
E.C.Duin,
M.E.Lafferty,
B.R.Crouse,
R.M.Allen,
I.Sanyal,
D.H.Flint,
and
M.K.Johnson
(1997).
[2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase.
|
| |
Biochemistry,
36,
11811-11820.
|
 |
|
|
|
|
 |
E.Hidalgo,
H.Ding,
and
B.Demple
(1997).
Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form.
|
| |
Cell,
88,
121-129.
|
 |
|
|
|
|
 |
J.P.Zehr,
D.Harris,
B.Dominic,
and
J.Salerno
(1997).
Structural analysis of the Trichodesmium nitrogenase iron protein: implications for aerobic nitrogen fixation activity.
|
| |
FEMS Microbiol Lett,
153,
303-309.
|
 |
|
|
|
|
 |
J.W.Peters,
M.H.Stowell,
S.M.Soltis,
M.G.Finnegan,
M.K.Johnson,
and
D.C.Rees
(1997).
Redox-dependent structural changes in the nitrogenase P-cluster.
|
| |
Biochemistry,
36,
1181-1187.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Schneider,
U.Gollan,
M.Dröttboom,
S.Selsemeier-Voigt,
and
A.Müller
(1997).
Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
|
| |
Eur J Biochem,
244,
789-800.
|
 |
|
|
|
|
 |
M.E.Rasche,
and
L.C.Seefeldt
(1997).
Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis.
|
| |
Biochemistry,
36,
8574-8585.
|
 |
|
|
|
|
 |
M.P.Scott,
and
J.Biggins
(1997).
Introduction of a [4Fe-4S (S-cys)4]+1,+2 iron-sulfur center into a four-alpha helix protein using design parameters from the domain of the Fx cluster in the Photosystem I reaction center.
|
| |
Protein Sci,
6,
340-346.
|
 |
|
|
|
|
 |
S.K.Grunwald,
and
P.W.Ludden
(1997).
NAD-dependent cross-linking of dinitrogenase reductase and dinitrogenase reductase ADP-ribosyltransferase from Rhodospirillum rubrum.
|
| |
J Bacteriol,
179,
3277-3283.
|
 |
|
|
|
|
 |
W.N.Lanzilotta,
and
L.C.Seefeldt
(1997).
Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
|
| |
Biochemistry,
36,
12976-12983.
|
 |
|
|
|
|
 |
C.E.McKenna,
A.M.Simeonov,
H.Eran,
and
M.Bravo-Leerabhandh
(1996).
Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
|
| |
Biochemistry,
35,
4502-4514.
|
 |
|
|
|
|
 |
C.Z.Blanchard,
and
B.J.Hales
(1996).
Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii.
|
| |
Biochemistry,
35,
472-478.
|
 |
|
|
|
|
 |
G.E.Sroga,
U.Landegren,
B.Bergman,
and
M.Lagerström-Fermér
(1996).
Isolation of nifH and part of nifD by modified capture polymerase chain reaction from a natural population of the marine cyanobacterium Trichodesmium sp.
|
| |
FEMS Microbiol Lett,
136,
137-145.
|
 |
|
|
|
|
 |
H.Noji,
T.Amano,
and
M.Yoshida
(1996).
Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes.
|
| |
J Bioenerg Biomembr,
28,
451-457.
|
 |
|
|
|
|
 |
J.A.Maupin-Furlow,
and
J.G.Ferry
(1996).
Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila.
|
| |
J Bacteriol,
178,
6849-6856.
|
 |
|
|
|
|
 |
J.W.Peters,
M.H.Stowell,
and
D.C.Rees
(1996).
A leucine-rich repeat variant with a novel repetitive protein structural motif.
|
| |
Nat Struct Biol,
3,
991-994.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.J.Ryle,
and
L.C.Seefeldt
(1996).
Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering.
|
| |
Biochemistry,
35,
4766-4775.
|
 |
|
|
|
|
 |
M.J.Ryle,
and
L.C.Seefeldt
(1996).
The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
|
| |
Biochemistry,
35,
15654-15662.
|
 |
|
|
|
|
 |
M.J.Ryle,
W.N.Lanzilotta,
and
L.C.Seefeldt
(1996).
Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135.
|
| |
Biochemistry,
35,
9424-9434.
|
 |
|
|
|
|
 |
R.C.Tittsworth,
and
B.J.Hales
(1996).
Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow.
|
| |
Biochemistry,
35,
479-487.
|
 |
|
|
|
|
 |
W.N.Lanzilotta,
K.Fisher,
and
L.C.Seefeldt
(1996).
Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
|
| |
Biochemistry,
35,
7188-7196.
|
 |
|
|
|
|
 |
J.Grimes,
A.K.Basak,
P.Roy,
and
D.Stuart
(1995).
The crystal structure of bluetongue virus VP7.
|
| |
Nature,
373,
167-170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.E.Rudd,
H.J.Sofia,
E.V.Koonin,
G.Plunkett,
S.Lazar,
and
P.E.Rouviere
(1995).
A new family of peptidyl-prolyl isomerases.
|
| |
Trends Biochem Sci,
20,
12-14.
|
 |
|
|
|
|
 |
K.L.Borden,
J.M.Lally,
S.R.Martin,
N.J.O'Reilly,
L.D.Etkin,
and
P.S.Freemont
(1995).
Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development.
|
| |
EMBO J,
14,
5947-5956.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Sundaramoorthy,
J.Terner,
and
T.L.Poulos
(1995).
The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.
|
| |
Structure,
3,
1367-1377.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Alexeev,
R.L.Baxter,
and
L.Sawyer
(1994).
Mechanistic implications and family relationships from the structure of dethiobiotin synthetase.
|
| |
Structure,
2,
1061-1072.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Hidalgo,
and
B.Demple
(1994).
An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein.
|
| |
EMBO J,
13,
138-146.
|
 |
|
|
|
|
 |
F.Moshiri,
J.W.Kim,
C.Fu,
and
R.J.Maier
(1994).
The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo.
|
| |
Mol Microbiol,
14,
101-114.
|
 |
|
|
|
|
 |
J.Durner,
I.Böhm,
H.Hilz,
and
P.Böger
(1994).
Posttranslational modification of nitrogenase. Differences between the purple bacterium Rhodospirillum rubrum and the cyanobacterium Anabaena variabilis.
|
| |
Eur J Biochem,
220,
125-130.
|
 |
|
|
|
|
 |
L.C.Seefeldt
(1994).
Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
|
| |
Protein Sci,
3,
2073-2081.
|
 |
|
|
|
|
 |
M.G.Duyvis,
H.Wassink,
and
H.Haaker
(1994).
Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
|
| |
Eur J Biochem,
225,
881-890.
|
 |
|
|
|
|
 |
P.W.Ludden
(1994).
Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes.
|
| |
Mol Cell Biochem,
138,
123-129.
|
 |
|
|
|
|
 |
R.M.Allen,
R.Chatterjee,
M.S.Madden,
P.W.Ludden,
and
V.K.Shah
(1994).
Biosynthesis of the iron-molybdenum cofactor of nitrogenase.
|
| |
Crit Rev Biotechnol,
14,
225-249.
|
 |
|
|
|
|
 |
Y.T.Chien,
and
S.H.Zinder
(1994).
Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum.
|
| |
J Bacteriol,
176,
6590-6598.
|
 |
|
|
|
|
 |
D.H.Burke,
J.E.Hearst,
and
A.Sidow
(1993).
Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins.
|
| |
Proc Natl Acad Sci U S A,
90,
7134-7138.
|
 |
|
|
|
|
 |
D.H.Burke,
M.Alberti,
and
J.E.Hearst
(1993).
The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ.
|
| |
J Bacteriol,
175,
2407-2413.
|
 |
|
|
|
|
 |
D.R.Dean,
J.T.Bolin,
and
L.Zheng
(1993).
Nitrogenase metalloclusters: structures, organization, and synthesis.
|
| |
J Bacteriol,
175,
6737-6744.
|
 |
|
|
|
|
 |
H.C.João,
and
R.J.Williams
(1993).
The anatomy of a kinase and the control of phosphate transfer.
|
| |
Eur J Biochem,
216,
1.
|
 |
|
|
|
|
 |
J.H.Golbeck
(1993).
Shared thematic elements in photochemical reaction centers.
|
| |
Proc Natl Acad Sci U S A,
90,
1642-1646.
|
 |
|
|
|
|
 |
M.B.Swindells
(1993).
Classification of doubly wound nucleotide binding topologies using automated loop searches.
|
| |
Protein Sci,
2,
2146-2153.
|
 |
|
|
|
|
 |
R.C.Prince,
and
M.J.Grossman
(1993).
Novel iron-sulfur clusters.
|
| |
Trends Biochem Sci,
18,
153-154.
|
 |
|
|
|
|
 |
R.R.Eady,
and
B.E.Smith
(1992).
Crystallography fixes it for nitrogenase.
|
| |
Curr Biol,
2,
637-639.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |