 |
PDBsum entry 1ms3
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.2.1.18
- exo-alpha-sialidase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
10:757-768
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis.
|
|
A.Buschiazzo,
M.F.Amaya,
M.L.Cremona,
A.C.Frasch,
P.M.Alzari.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Trans-sialidases (TS) are GPI-anchored surface enzymes expressed in specific
developmental stages of trypanosome parasites like Trypanosoma cruzi, the
etiologic agent of Chagas disease, and T. brucei, the causative agent of
sleeping sickness. TS catalyzes the transfer of sialic acid residues from host
to parasite glycoconjugates through a transglycosidase reaction that appears to
be critical for T. cruzi survival and cell invasion capability. We report here
the structure of the T. cruzi trans-sialidase, alone and in complex with sugar
ligands. Sialic acid binding is shown to trigger a conformational switch that
modulates the affinity for the acceptor substrate and concomitantly creates the
conditions for efficient transglycosylation. The structure provides a framework
for the structure-based design of novel inhibitors with potential therapeutic
applications.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Lactose Binding to TcTS(A) Complete BIAcore
sensorgrams showing the interaction between the inactive mutant
Asp59Asn and sialic acid (continuous line). Lactose (10 mM) was
injected after equilibrating the protein in the presence
(continuous line) or absence (dashed line) of sialic acid.(b)
Detailed view of the interaction between TcTS and lactose,
demonstrating that the acceptor substrate only binds to TcTS
when sialic acid is present.
|
 |
Figure 5.
Figure 5. TcTS-Lactose Interactions(A) Electron density
(2Fo-Fc) map, contoured at 1 σ, of the lactose binding site in
the triclinic crystal form. The loop containing Gly145/Gly146
from a neighbor molecule in the crystal is also shown.(B)
Electron density (2Fo-Fc) map, contoured at 1 σ, showing the
lactose and DANA molecules in the ternary complex.(C) Schematic
diagram showing protein-carbohydrate hydrogen bonding
interactions.(D) Stacking interactions of the lactose moiety
with the aromatic rings of Trp312 and Tyr119 in the ternary
complex.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2002,
10,
757-768)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.Bora,
S.Garg,
P.Sen,
D.Kumar,
P.Kaur,
R.H.Khan,
and
Y.D.Sharma
(2011).
Plasmodium vivax Tryptophan-Rich Antigen PvTRAg33.5 Contains Alpha Helical Structure and Multidomain Architecture.
|
| |
PLoS One,
6,
e16294.
|
 |
|
|
|
|
 |
J.A.Harrison,
K.P.Kartha,
E.J.Fournier,
T.L.Lowary,
C.Malet,
U.J.Nilsson,
O.Hindsgaul,
S.Schenkman,
J.H.Naismith,
and
R.A.Field
(2011).
Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries.
|
| |
Org Biomol Chem,
9,
1653-1660.
|
 |
|
|
|
|
 |
R.R.Tonelli,
A.C.Torrecilhas,
J.F.Jacysyn,
M.A.Juliano,
W.Colli,
and
M.J.Alves
(2011).
In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection.
|
| |
Parasitology,
138,
481-492.
|
 |
|
|
|
|
 |
T.Lieke,
D.Gröbe,
V.Blanchard,
D.Grunow,
R.Tauber,
M.Zimmermann-Kordmann,
T.Jacobs,
and
W.Reutter
(2011).
Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines.
|
| |
Glycoconj J,
28,
31-37.
|
 |
|
|
|
|
 |
F.L.Mitchell,
S.M.Miles,
J.Neres,
E.V.Bichenkova,
and
R.A.Bryce
(2010).
Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase.
|
| |
Biophys J,
98,
L38-L40.
|
 |
|
|
|
|
 |
J.Cheng,
S.Huang,
H.Yu,
Y.Li,
K.Lau,
and
X.Chen
(2010).
Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides.
|
| |
Glycobiology,
20,
260-268.
|
 |
|
|
|
|
 |
M.E.Giorgi,
L.Ratier,
R.Agusti,
A.C.Frasch,
and
R.M.de Lederkremer
(2010).
Synthesis of PEGylated lactose analogs for inhibition studies on T.cruzi trans-sialidase.
|
| |
Glycoconj J,
27,
549-559.
|
 |
|
|
|
|
 |
P.A.Sartor,
R.Agusti,
M.S.Leguizamón,
O.Campetella,
and
R.M.de Lederkremer
(2010).
Continuous nonradioactive method for screening trypanosomal trans-sialidase activity and its inhibitors.
|
| |
Glycobiology,
20,
982-990.
|
 |
|
|
|
|
 |
S.T.Carvalho,
M.Sola-Penna,
I.A.Oliveira,
S.Pita,
A.S.Gonçalves,
B.C.Neves,
F.R.Sousa,
L.Freire-de-Lima,
M.Kurogochi,
H.Hinou,
S.Nishimura,
L.Mendonça-Previato,
J.O.Previato,
and
A.R.Todeschini
(2010).
A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence.
|
| |
Glycobiology,
20,
1034-1045.
|
 |
|
|
|
|
 |
E.M.Quistgaard,
and
S.S.Thirup
(2009).
Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families.
|
| |
BMC Struct Biol,
9,
46.
|
 |
|
|
|
|
 |
F.Villalta,
J.Scharfstein,
A.W.Ashton,
K.M.Tyler,
F.Guan,
S.Mukherjee,
M.F.Lima,
S.Alvarez,
L.M.Weiss,
H.Huang,
F.S.Machado,
and
H.B.Tanowitz
(2009).
Perspectives on the Trypanosoma cruzi-host cell receptor interactions.
|
| |
Parasitol Res,
104,
1251-1260.
|
 |
|
|
|
|
 |
H.Erdmann,
C.Steeg,
F.Koch-Nolte,
B.Fleischer,
and
T.Jacobs
(2009).
Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E).
|
| |
Cell Microbiol,
11,
1600-1611.
|
 |
|
|
|
|
 |
J.H.Kim,
H.W.Ryu,
J.H.Shim,
K.H.Park,
and
S.G.Withers
(2009).
Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives.
|
| |
Chembiochem,
10,
2475-2479.
|
 |
|
|
|
|
 |
M.V.Chuenkova,
and
M.PereiraPerrin
(2009).
Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy.
|
| |
Sci Signal,
2,
ra74.
|
 |
|
|
|
|
 |
O.Demir,
and
A.E.Roitberg
(2009).
Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase.
|
| |
Biochemistry,
48,
3398-3406.
|
 |
|
|
|
|
 |
S.A.Allman,
H.H.Jensen,
B.Vijayakrishnan,
J.A.Garnett,
E.Leon,
Y.Liu,
D.C.Anthony,
N.R.Sibson,
T.Feizi,
S.Matthews,
and
B.G.Davis
(2009).
Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis.
|
| |
Chembiochem,
10,
2522-2529.
|
 |
|
|
|
|
 |
S.Uchiyama,
A.F.Carlin,
A.Khosravi,
S.Weiman,
A.Banerjee,
D.Quach,
G.Hightower,
T.J.Mitchell,
K.S.Doran,
and
V.Nizet
(2009).
The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion.
|
| |
J Exp Med,
206,
1845-1852.
|
 |
|
|
|
|
 |
B.Lu,
Z.Petrola,
A.O.Luquetti,
and
M.PereiraPerrin
(2008).
Auto-antibodies to receptor tyrosine kinases TrkA, TrkB and TrkC in patients with chronic Chagas' disease.
|
| |
Scand J Immunol,
67,
603-609.
|
 |
|
|
|
|
 |
F.Villalta,
M.N.Madison,
Y.Y.Kleshchenko,
P.N.Nde,
and
M.F.Lima
(2008).
Molecular analysis of early host cell infection by Trypanosoma cruzi.
|
| |
Front Biosci,
13,
3714-3734.
|
 |
|
|
|
|
 |
L.Ratier,
M.Urrutia,
G.Paris,
L.Zarebski,
A.C.Frasch,
and
F.A.Goldbaum
(2008).
Relevance of the diversity among members of the Trypanosoma cruzi trans-sialidase family analyzed with camelids single-domain antibodies.
|
| |
PLoS ONE,
3,
e3524.
|
 |
|
|
|
|
 |
S.L.Newstead,
J.A.Potter,
J.C.Wilson,
G.Xu,
C.H.Chien,
A.G.Watts,
S.G.Withers,
and
G.L.Taylor
(2008).
The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates.
|
| |
J Biol Chem,
283,
9080-9088.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.G.Watts,
P.Oppezzo,
S.G.Withers,
P.M.Alzari,
and
A.Buschiazzo
(2006).
Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase.
|
| |
J Biol Chem,
281,
4149-4155.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Neubacher,
S.Scheid,
S.Kelm,
A.C.Frasch,
B.Meyer,
and
J.Thiem
(2006).
Synthesis of Neu5Ac oligosaccharides and analogues by transglycosylation and their binding properties as ligands to MAG.
|
| |
Chembiochem,
7,
896-899.
|
 |
|
|
|
|
 |
C.A.Buscaglia,
V.A.Campo,
A.C.Frasch,
and
J.M.Di Noia
(2006).
Trypanosoma cruzi surface mucins: host-dependent coat diversity.
|
| |
Nat Rev Microbiol,
4,
229-236.
|
 |
|
|
|
|
 |
G.N.Montagna,
J.E.Donelson,
and
A.C.Frasch
(2006).
Procyclic Trypanosoma brucei expresses separate sialidase and trans-sialidase enzymes on its surface membrane.
|
| |
J Biol Chem,
281,
33949-33958.
|
 |
|
|
|
|
 |
H.Streicher,
and
H.Busse
(2006).
Building a successful structural motif into sialylmimetics-cyclohexenephosphonate monoesters as pseudo-sialosides with promising inhibitory properties.
|
| |
Bioorg Med Chem,
14,
1047-1057.
|
 |
|
|
|
|
 |
J.Mucci,
M.G.Risso,
M.S.Leguizamón,
A.C.Frasch,
and
O.Campetella
(2006).
The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation.
|
| |
Cell Microbiol,
8,
1086-1095.
|
 |
|
|
|
|
 |
B.Neubacher,
D.Schmidt,
P.Ziegelmuller,
and
J.Thiem
(2005).
Preparation of sialylated oligosaccharides employing recombinant trans-sialidase from Trypanosoma cruzi.
|
| |
Org Biomol Chem,
3,
1551-1556.
|
 |
|
|
|
|
 |
D.M.Anstrom,
L.Colip,
B.Moshofsky,
E.Hatcher,
and
S.J.Remington
(2005).
Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
1069-1074.
|
 |
|
|
|
|
 |
K.Stummeyer,
A.Dickmanns,
M.Mühlenhoff,
R.Gerardy-Schahn,
and
R.Ficner
(2005).
Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F.
|
| |
Nat Struct Mol Biol,
12,
90-96.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Yuan,
T.B.Thompson,
B.A.Wurzburg,
R.G.Paterson,
R.A.Lamb,
and
T.S.Jardetzky
(2005).
Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose.
|
| |
Structure,
13,
803-815.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.L.Newstead,
J.N.Watson,
A.J.Bennet,
and
G.Taylor
(2005).
Galactose recognition by the carbohydrate-binding module of a bacterial sialidase.
|
| |
Acta Crystallogr D Biol Crystallogr,
61,
1483-1491.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.R.Todeschini,
W.B.Dias,
M.F.Girard,
J.M.Wieruszeski,
L.Mendonça-Previato,
and
J.O.Previato
(2004).
Enzymatically inactive trans-sialidase from Trypanosoma cruzi binds sialyl and beta-galactopyranosyl residues in a sequential ordered mechanism.
|
| |
J Biol Chem,
279,
5323-5328.
|
 |
|
|
|
|
 |
I.Moustafa,
H.Connaris,
M.Taylor,
V.Zaitsev,
J.C.Wilson,
M.J.Kiefel,
M.von Itzstein,
and
G.Taylor
(2004).
Sialic acid recognition by Vibrio cholerae neuraminidase.
|
| |
J Biol Chem,
279,
40819-40826.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.F.Amaya,
A.G.Watts,
I.Damager,
A.Wehenkel,
T.Nguyen,
A.Buschiazzo,
G.Paris,
A.C.Frasch,
S.G.Withers,
and
P.M.Alzari
(2004).
Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase.
|
| |
Structure,
12,
775-784.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Newstead,
C.H.Chien,
M.Taylor,
and
G.Taylor
(2004).
Crystallization and atomic resolution X-ray diffraction of the catalytic domain of the large sialidase, nanI, from Clostridium perfringens.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
2063-2066.
|
 |
|
|
|
|
 |
E.Tiralongo,
I.Martensen,
J.Grötzinger,
J.Tiralongo,
and
R.Schauer
(2003).
Trans-sialidase-like sequences from Trypanosoma congolense conserve most of the critical active site residues found in other trans-sialidases.
|
| |
Biol Chem,
384,
1203-1213.
|
 |
|
|
|
|
 |
E.Tiralongo,
S.Schrader,
H.Lange,
H.Lemke,
J.Tiralongo,
and
R.Schauer
(2003).
Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense.
|
| |
J Biol Chem,
278,
23301-23310.
|
 |
|
|
|
|
 |
L.C.James,
and
D.S.Tawfik
(2003).
Conformational diversity and protein evolution--a 60-year-old hypothesis revisited.
|
| |
Trends Biochem Sci,
28,
361-368.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2003).
A survey of the year 2002 commercial optical biosensor literature.
|
| |
J Mol Recognit,
16,
351-382.
|
 |
|
|
|
|
 |
P.M.Colman,
and
B.J.Smith
(2002).
The trypanosomal trans-sialidase: two catalytic functions associated with one catalytic site.
|
| |
Structure,
10,
1466-1468.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |