spacer
spacer

PDBsum entry 1m1h

Go to PDB code: 
protein links
Transcription PDB id
1m1h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
182 a.a. *
Waters ×296
* Residue conservation analysis
PDB id:
1m1h
Name: Transcription
Title: Crystal structure of aquifex aeolicus n-utilization substance g (nusg), space group i222
Structure: Transcription antitermination protein nusg. Chain: a. Engineered: yes
Source: Aquifex aeolicus. Organism_taxid: 63363. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.95Å     R-factor:   0.234     R-free:   0.259
Authors: T.Steiner,J.T.Kaiser,S.Marinkovic,R.Huber,M.C.Wahl
Key ref:
T.Steiner et al. (2002). Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J, 21, 4641-4653. PubMed id: 12198166 DOI: 10.1093/emboj/cdf455
Date:
19-Jun-02     Release date:   04-Feb-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O67757  (NUSG_AQUAE) -  Transcription termination/antitermination protein NusG from Aquifex aeolicus (strain VF5)
Seq:
Struc:
248 a.a.
182 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1093/emboj/cdf455 EMBO J 21:4641-4653 (2002)
PubMed id: 12198166  
 
 
Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities.
T.Steiner, J.T.Kaiser, S.Marinkoviç, R.Huber, M.C.Wahl.
 
  ABSTRACT  
 
Microbial transcription modulator NusG interacts with RNA polymerase and termination factor rho, displaying striking functional homology to eukaryotic Spt5. The protein is also a translational regulator. We have determined crystal structures of Aquifex aeolicus NusG showing a modular design: an N-terminal RNP-like domain, a C-terminal element with a KOW sequence motif and a species-specific immunoglobulin-like fold. The structures reveal bona fide nucleic acid binding sites, and nucleic acid binding activities can be detected for NusG from three organisms and for the KOW element alone. A conserved KOW domain is defined as a new class of nucleic acid binding folds. This module is a close structural homolog of tudor protein-protein interaction motifs. Putative protein binding sites for the RNP and KOW domains can be deduced, which differ from the areas implicated in nucleic acid interactions. The results strongly argue that both protein and nucleic acid contacts are important for NusG's functions and that the factor can act as an adaptor mediating indirect protein-nucleic acid associations.
 
  Selected figure(s)  
 
Figure 4.
Figure 4 (A) Superposition of aaeNusG domain III (gold), r-protein L24 (blue) and the SMN tudor domain (red). F211 of aaeNusG and Y109 of the tudor domain, presumably important for contacting other proteins, are shown in ball-and-stick. (B) Domain III in complex with RNA molecules according to the L24−rRNA structure. The sequence originally identified as the KOW element is shown in red.
Figure 6.
Figure 6 (A) Deduced nucleic acid (brown) and protein (green) interaction sites mapped onto the aaeNusG surface. The left panel is in the same orientation as Figure 2C. The three domains are labeled. Numbers identify potential interactions sites. 1, S6-like nucleic acid interaction site; 2, U1A-like nucleic acid interaction site; 3, nucleic acid interaction site mapped by L24−rRNA contacts; 4, S18-like protein interaction site; 5, tudor-like protein interaction site. If helix 3 of the RNP motif was removed upon U1A-like nucleic acid interaction, additional contact sites would become uncovered. Interaction sites that could not be deduced from the structures may also exist in domain II. (B) Stereo-ribbon plot of aaeNusG with the mutated residues in magenta (with phenotype) and light blue (no phenotype).
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2002, 21, 4641-4653) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21187417 B.J.Klein, D.Bose, K.J.Baker, Z.M.Yusoff, X.Zhang, and K.S.Murakami (2011).
RNA polymerase and transcription elongation factor Spt4/5 complex structure.
  Proc Natl Acad Sci U S A, 108, 546-550.
PDB code: 3p8b
21345171 B.M.Burmann, U.Scheckenhofer, K.Schweimer, and P.Rösch (2011).
Domain interactions of the transcription-translation coupling factor Escherichia coli NusG are intermolecular and transient.
  Biochem J, 435, 783-789.  
21386817 F.W.Martinez-Rucobo, S.Sainsbury, A.C.Cheung, and P.Cramer (2011).
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
  EMBO J, 30, 1302-1310.
PDB code: 3qqc
21297639 J.H.Chang, S.Xiang, K.Xiang, J.L.Manley, and L.Tong (2011).
Structural and biochemical studies of the 5'→3' exoribonuclease Xrn1.
  Nat Struct Mol Biol, 18, 270-276.
PDB codes: 3pie 3pif
20197319 A.Hirtreiter, G.E.Damsma, A.C.Cheung, D.Klose, D.Grohmann, E.Vojnic, A.C.Martin, P.Cramer, and F.Werner (2010).
Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.
  Nucleic Acids Res, 38, 4040-4051.
PDB code: 3lpe
20534440 A.Missra, and D.S.Gilmour (2010).
Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex.
  Proc Natl Acad Sci U S A, 107, 11301-11306.  
20639538 A.Sevostyanova, and I.Artsimovitch (2010).
Functional analysis of Thermus thermophilus transcription factor NusG.
  Nucleic Acids Res, 38, 7432-7445.  
20413501 B.M.Burmann, K.Schweimer, X.Luo, M.C.Wahl, B.L.Stitt, M.E.Gottesman, and P.Rösch (2010).
A NusE:NusG complex links transcription and translation.
  Science, 328, 501-504.
PDB code: 2kvq
20132437 G.A.Belogurov, A.Sevostyanova, V.Svetlov, and I.Artsimovitch (2010).
Functional regions of the N-terminal domain of the antiterminator RfaH.
  Mol Microbiol, 76, 286-301.  
20716687 J.L.Llácer, J.Espinosa, M.A.Castells, A.Contreras, K.Forchhammer, and V.Rubio (2010).
Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII.
  Proc Natl Acad Sci U S A, 107, 15397-15402.
PDB codes: 2xg8 2xgx 2xhk 2xko 2xkp
19896365 D.G.Vassylyev (2009).
Elongation by RNA polymerase: a race through roadblocks.
  Curr Opin Struct Biol, 19, 691-700.  
19013248 D.Zhang, J.Tözsér, and D.S.Waugh (2009).
Molecular cloning, overproduction, purification and biochemical characterization of the p39 nsp2 protease domains encoded by three alphaviruses.
  Protein Expr Purif, 64, 89-97.  
19096362 G.A.Belogurov, R.A.Mooney, V.Svetlov, R.Landick, and I.Artsimovitch (2009).
Functional specialization of transcription elongation factors.
  EMBO J, 28, 112-122.  
19801412 M.Chatzidaki-Livanis, M.J.Coyne, and L.E.Comstock (2009).
A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis.
  J Bacteriol, 191, 7288-7295.  
19500594 R.A.Mooney, K.Schweimer, P.Rösch, M.Gottesman, and R.Landick (2009).
Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.
  J Mol Biol, 391, 341-358.
PDB codes: 2jvv 2k06
19150431 R.A.Mooney, S.E.Davis, J.M.Peters, J.L.Rowland, A.Z.Ansari, and R.Landick (2009).
Regulator trafficking on bacterial transcription units in vivo.
  Mol Cell, 33, 97.  
19432457 S.P.Edmondson, J.Turri, K.Smith, A.Clark, and J.W.Shriver (2009).
Structure, stability, and flexibility of ribosomal protein L14e from Sulfolobus solfataricus.
  Biochemistry, 48, 5553-5562.  
18341589 C.A.Dias, V.S.Cano, S.M.Rangel, L.H.Apponi, M.C.Frigieri, J.R.Muniz, W.Garcia, M.H.Park, R.C.Garratt, C.F.Zanelli, and S.R.Valentini (2008).
Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis.
  FEBS J, 275, 1874-1888.  
18786404 G.Shaw, J.Gan, Y.N.Zhou, H.Zhi, P.Subburaman, R.Zhang, A.Joachimiak, D.J.Jin, and X.Ji (2008).
Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription.
  Structure, 16, 1417-1427.
PDB codes: 3dmq 6bog
19000817 M.Guo, F.Xu, J.Yamada, T.Egelhofer, Y.Gao, G.A.Hartzog, M.Teng, and L.Niu (2008).
Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
  Structure, 16, 1649-1658.  
18465893 O.Paliy, S.M.Gargac, Y.Cheng, V.N.Uversky, and A.K.Dunker (2008).
Protein disorder is positively correlated with gene expression in Escherichia coli.
  J Proteome Res, 7, 2234-2245.  
18184592 R.N.de Jong, V.Truffault, T.Diercks, E.Ab, M.A.Daniels, R.Kaptein, and G.E.Folkers (2008).
Structure and DNA binding of the human Rtf1 Plus3 domain.
  Structure, 16, 149-159.
PDB code: 2bze
17434131 G.A.Belogurov, M.N.Vassylyeva, V.Svetlov, S.Klyuyev, N.V.Grishin, D.G.Vassylyev, and I.Artsimovitch (2007).
Structural basis for converting a general transcription factor into an operon-specific virulence regulator.
  Mol Cell, 26, 117-129.
PDB code: 2oug
17298945 L.Kaustov, J.Lukin, A.Lemak, S.Duan, M.Ho, R.Doherty, L.Z.Penn, and C.H.Arrowsmith (2007).
The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53.
  J Biol Chem, 282, 11300-11307.
PDB code: 2jng
17925393 M.A.Holbert, T.Sikorski, J.Carten, D.Snowflack, S.Hodawadekar, and R.Marmorstein (2007).
The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting.
  J Biol Chem, 282, 36603-36613.
PDB code: 2rc4
18073113 M.Kuratani, Y.Yoshikawa, Y.Bessho, K.Higashijima, T.Ishii, R.Shibata, S.Takahashi, K.Yutani, and S.Yokoyama (2007).
Structural basis of the initial binding of tRNA(Ile) lysidine synthetase TilS with ATP and L-lysine.
  Structure, 15, 1642-1653.
PDB codes: 2e21 2e89
17082182 Q.Zhao, L.Qin, F.Jiang, B.Wu, W.Yue, F.Xu, Z.Rong, H.Yuan, X.Xie, Y.Gao, C.Bai, M.Bartlam, X.Pei, and Z.Rao (2007).
Structure of human spindlin1. Tandem tudor-like domains for cell cycle regulation.
  J Biol Chem, 282, 647-656.
PDB code: 2ns2
17404243 S.Malik, M.J.Barrero, and T.Jones (2007).
Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator.
  Proc Natl Acad Sci U S A, 104, 6182-6187.  
16469698 A.M.Deaconescu, A.L.Chambers, A.J.Smith, B.E.Nickels, A.Hochschild, N.J.Savery, and S.A.Darst (2006).
Structural basis for bacterial transcription-coupled DNA repair.
  Cell, 124, 507-520.
PDB code: 2eyq
  17012804 M.N.Vassylyeva, V.Svetlov, S.Klyuyev, Y.D.Devedjiev, I.Artsimovitch, and D.G.Vassylyev (2006).
Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1027-1030.  
16006558 F.Zalfa, S.Adinolfi, I.Napoli, E.Kühn-Hölsken, H.Urlaub, T.Achsel, A.Pastore, and C.Bagni (2005).
Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif.
  J Biol Chem, 280, 33403-33410.  
16271871 Y.Zhang, Y.T.Cheng, D.Bi, K.Palma, and X.Li (2005).
MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana.
  Curr Biol, 15, 1936-1942.  
15341721 G.Charier, J.Couprie, B.Alpha-Bazin, V.Meyer, E.Quéméneur, R.Guérois, I.Callebaut, B.Gilquin, and S.Zinn-Justin (2004).
The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding.
  Structure, 12, 1551-1562.
PDB code: 1ssf
15090525 H.D.Carter, V.Svetlov, and I.Artsimovitch (2004).
Highly divergent RfaH orthologs from pathogenic proteobacteria can substitute for Escherichia coli RfaH both in vivo and in vitro.
  J Bacteriol, 186, 2829-2840.  
15162485 P.Reay, K.Yamasaki, T.Terada, S.Kuramitsu, M.Shirouzu, and S.Yokoyama (2004).
Structural and sequence comparisons arising from the solution structure of the transcription elongation factor NusG from Thermus thermophilus.
  Proteins, 56, 40-51.
PDB codes: 1nz8 1nz9
12600194 J.R.Knowlton, M.Bubunenko, M.Andrykovitch, W.Guo, K.M.Routzahn, D.S.Waugh, D.L.Court, and X.Ji (2003).
A spring-loaded state of NusG in its functional cycle is suggested by X-ray crystallography and supported by site-directed mutants.
  Biochemistry, 42, 2275-2281.
PDB codes: 1npp 1npr
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer