spacer
spacer

PDBsum entry 1ld8

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase PDB id
1ld8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
313 a.a. *
407 a.a. *
Ligands
GLC-FRU
ACY ×2
FPP
U49
Metals
_ZN
Waters ×691
* Residue conservation analysis
PDB id:
1ld8
Name: Transferase
Title: Co-crystal structure of human farnesyltransferase with farnesyldiphosphate and inhibitor compound 49
Structure: Protein farnesyltransferase alpha subunit. Chain: a. Synonym: caax farnesyltransferase alpha subunit, ras proteins prenyltransferase alpha, ftase-alpha. Engineered: yes. Protein farnesyltransferase beta subunit. Chain: b. Synonym: caax farnesyltransferase beta subunit, ras proteins prenyltransferase beta, ftase-beta.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.184     R-free:   0.202
Authors: J.S.Taylor,K.L.Terry,L.S.Beese
Key ref: I.M.Bell et al. (2002). 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency. J Med Chem, 45, 2388-2409. PubMed id: 12036349 DOI: 10.1021/jm010531d
Date:
08-Apr-02     Release date:   19-Jun-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P49354  (FNTA_HUMAN) -  Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha from Homo sapiens
Seq:
Struc:
379 a.a.
313 a.a.
Protein chain
Pfam   ArchSchema ?
P49356  (FNTB_HUMAN) -  Protein farnesyltransferase subunit beta from Homo sapiens
Seq:
Struc:
437 a.a.
407 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.5.1.58  - protein farnesyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-cysteinyl-[protein] + (2E,6E)-farnesyl diphosphate = S-(2E,6E)- farnesyl-L-cysteinyl-[protein] + diphosphate
L-cysteinyl-[protein]
Bound ligand (Het Group name = FPP)
corresponds exactly
+ (2E,6E)-farnesyl diphosphate
= S-(2E,6E)- farnesyl-L-cysteinyl-[protein]
+ diphosphate
      Cofactor: Mg(2+); Zn(2+)
   Enzyme class 2: Chain A: E.C.2.5.1.59  - protein geranylgeranyltransferase type I.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: geranylgeranyl diphosphate + L-cysteinyl-[protein] = S-geranylgeranyl-L- cysteinyl-[protein] + diphosphate
geranylgeranyl diphosphate
Bound ligand (Het Group name = FPP)
matches with 82.76% similarity
+ L-cysteinyl-[protein]
= S-geranylgeranyl-L- cysteinyl-[protein]
+ diphosphate
      Cofactor: Zn(2+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/jm010531d J Med Chem 45:2388-2409 (2002)
PubMed id: 12036349  
 
 
3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency.
I.M.Bell, S.N.Gallicchio, M.Abrams, L.S.Beese, D.C.Beshore, H.Bhimnathwala, M.J.Bogusky, C.A.Buser, J.C.Culberson, J.Davide, M.Ellis-Hutchings, C.Fernandes, J.B.Gibbs, S.L.Graham, K.A.Hamilton, G.D.Hartman, D.C.Heimbrook, C.F.Homnick, H.E.Huber, J.R.Huff, K.Kassahun, K.S.Koblan, N.E.Kohl, R.B.Lobell, J.J.Lynch, R.Robinson, A.D.Rodrigues, J.S.Taylor, E.S.Walsh, T.M.Williams, C.B.Zartman.
 
  ABSTRACT  
 
A series of macrocyclic 3-aminopyrrolidinone farnesyltransferase inhibitors (FTIs) has been synthesized. Compared with previously described linear 3-aminopyrrolidinone FTIs such as compound 1, macrocycles such as 49 combined improved pharmacokinetic properties with a reduced potential for side effects. In dogs, oral bioavailability was good to excellent, and increases in plasma half-life were due to attenuated clearance. It was observed that in vivo clearance correlated with the flexibility of the molecules and this concept proved useful in the design of FTIs that exhibited low clearance, such as FTI 78. X-ray crystal structures of compounds 49 and 66 complexed with farnesyltransferase (FTase)-farnesyl diphosphate (FPP) were determined, and they provide details of the key interactions in such ternary complexes. Optimization of this 3-aminopyrrolidinone series of compounds led to significant increases in potency, providing 83 and 85, the most potent inhibitors of FTase in cells described to date.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19246009 M.A.Hast, S.Fletcher, C.G.Cummings, E.E.Pusateri, M.A.Blaskovich, K.Rivas, M.H.Gelb, W.C.Van Voorhis, S.M.Sebti, A.D.Hamilton, and L.S.Beese (2009).
Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase.
  Chem Biol, 16, 181-192.
PDB codes: 3e30 3e32 3e33 3e34 3e37
18591981 E.M.Driggers, S.P.Hale, J.Lee, and N.K.Terrett (2008).
The exploration of macrocycles for drug discovery--an underexploited structural class.
  Nat Rev Drug Discov, 7, 608-624.  
16204887 J.Aishima, D.S.Russel, L.J.Guibas, P.D.Adams, and A.T.Brunger (2005).
Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.
  Acta Crystallogr D Biol Crystallogr, 61, 1354-1363.  
15837622 M.R.Lackner, R.M.Kindt, P.M.Carroll, K.Brown, M.R.Cancilla, C.Chen, H.de Silva, Y.Franke, B.Guan, T.Heuer, T.Hung, K.Keegan, J.M.Lee, V.Manne, C.O'Brien, D.Parry, J.J.Perez-Villar, R.K.Reddy, H.Xiao, H.Zhan, M.Cockett, G.Plowman, K.Fitzgerald, M.Costa, and P.Ross-Macdonald (2005).
Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors.
  Cancer Cell, 7, 325-336.  
15459676 J.G.Lombardino, and J.A.Lowe (2004).
The role of the medicinal chemist in drug discovery--then and now.
  Nat Rev Drug Discov, 3, 853-862.  
15003246 S.Ekins (2004).
Predicting undesirable drug interactions with promiscuous proteins in silico.
  Drug Discov Today, 9, 276-285.  
12374986 S.B.Long, P.J.Casey, and L.S.Beese (2002).
Reaction path of protein farnesyltransferase at atomic resolution.
  Nature, 419, 645-650.
PDB codes: 1kzo 1kzp 1kzr
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer