spacer
spacer

PDBsum entry 1ld3

Go to PDB code: 
protein metals links
Lyase PDB id
1ld3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
309 a.a. *
Metals
_ZN
Waters ×37
* Residue conservation analysis
PDB id:
1ld3
Name: Lyase
Title: Crystal structure of b. Subilis ferrochelatase with zn(2+) bound at the active site.
Structure: Ferrochelatase. Chain: a. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.60Å     R-factor:   0.217     R-free:   0.274
Authors: D.Lecerof,M.N.Fodje,R.A.Leon,U.Olsson,A.Hansson,E.Sigfridsson,U.Ryde, M.Hansson,S.Al-Karadaghi
Key ref: D.Lecerof et al. (2003). Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites. J Biol Inorg Chem, 8, 452-458. PubMed id: 12761666 DOI: 10.1007/s00775-002-0436-1
Date:
08-Apr-02     Release date:   20-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P32396  (HEMH_BACSU) -  Coproporphyrin III ferrochelatase from Bacillus subtilis (strain 168)
Seq:
Struc:
310 a.a.
309 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.4.99.1.9  - coproporphyrin ferrochelatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Fe-coproporphyrin III + 2 H+ = coproporphyrin III + Fe2+
Fe-coproporphyrin III
+ 2 × H(+)
= coproporphyrin III
+ Fe(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1007/s00775-002-0436-1 J Biol Inorg Chem 8:452-458 (2003)
PubMed id: 12761666  
 
 
Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites.
D.Lecerof, M.N.Fodje, R.Alvarez León, U.Olsson, A.Hansson, E.Sigfridsson, U.Ryde, M.Hansson, S.Al-Karadaghi.
 
  ABSTRACT  
 
Ferrochelatase, the terminal enzyme in heme biosynthesis, catalyses metal insertion into protoporphyrin IX. The location of the metal binding site with respect to the bound porphyrin substrate and the mode of metal binding are of central importance for understanding the mechanism of porphyrin metallation. In this work we demonstrate that Zn(2+), which is commonly used as substrate in assays of the ferrochelatase reaction, and Cd(2+), an inhibitor of the enzyme, bind to the invariant amino acids His183 and Glu264 and water molecules, all located within the porphyrin binding cleft. On the other hand, Mg(2+), which has been shown to bind close to the surface at 7 A from His183, was largely absent from its site. Activity measurements demonstrate that Mg(2+) has a stimulatory effect on the enzyme, lowering K(M) for Zn(2+) from 55 to 24 micro M. Changing one of the Mg(2+) binding residues, Glu272, to serine abolishes the effect of Mg(2+). It is proposed that prior to metal insertion the metal may form a sitting-atop (SAT) complex with the invariant His-Glu couple and the porphyrin. Metal binding to the Mg(2+) site may stimulate metal release from the protein ligands and its insertion into the porphyrin.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21052751 M.D.Hansson, T.Karlberg, C.A.Söderberg, S.Rajan, M.J.Warren, S.Al-Karadaghi, S.E.Rigby, and M.Hansson (2011).
Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase.
  J Biol Inorg Chem, 16, 235-242.  
19767646 R.E.Davidson, C.J.Chesters, and J.D.Reid (2009).
Metal ion selectivity and substrate inhibition in the metal ion chelation catalyzed by human ferrochelatase.
  J Biol Chem, 284, 33795-33799.  
18593702 G.A.Hunter, M.P.Sampson, and G.C.Ferreira (2008).
Metal ion substrate inhibition of ferrochelatase.
  J Biol Chem, 283, 23685-23691.  
18423489 T.Karlberg, M.D.Hansson, R.K.Yengo, R.Johansson, H.O.Thorvaldsen, G.C.Ferreira, M.Hansson, and S.Al-Karadaghi (2008).
Porphyrin binding and distortion and substrate specificity in the ferrochelatase reaction: the role of active site residues.
  J Mol Biol, 378, 1074-1083.
PDB codes: 2q2n 2q2o 2q3j
17884090 A.E.Medlock, T.A.Dailey, T.A.Ross, H.A.Dailey, and W.N.Lanzilotta (2007).
A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase.
  J Mol Biol, 373, 1006-1016.
PDB codes: 2qd1 2qd2 2qd3 2qd4 2qd5
17567154 H.A.Dailey, C.K.Wu, P.Horanyi, A.E.Medlock, W.Najahi-Missaoui, A.E.Burden, T.A.Dailey, and J.Rose (2007).
Altered orientation of active site residues in variants of human ferrochelatase. Evidence for a hydrogen bond network involved in catalysis.
  Biochemistry, 46, 7973-7979.
PDB codes: 2pnj 2po5 2po7
16835730 J.Yin, L.X.Xu, M.M.Cherney, E.Raux-Deery, A.A.Bindley, A.Savchenko, J.R.Walker, M.E.Cuff, M.J.Warren, and M.N.James (2006).
Crystal structure of the vitamin B12 biosynthetic cobaltochelatase, CbiXS, from Archaeoglobus fulgidus.
  J Struct Funct Genomics, 7, 37-50.
PDB code: 2dj5
16453119 M.D.Hansson, M.Lindstam, and M.Hansson (2006).
Crosstalk between metal ions in Bacillus subtilis ferrochelatase.
  J Biol Inorg Chem, 11, 325-333.  
16463102 R.J.Sawers, J.Viney, P.R.Farmer, R.R.Bussey, G.Olsefski, K.Anufrikova, C.N.Hunter, and T.P.Brutnell (2006).
The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase.
  Plant Mol Biol, 60, 95.  
16469498 S.Al-Karadaghi, R.Franco, M.Hansson, J.A.Shelnutt, G.Isaya, and G.C.Ferreira (2006).
Chelatases: distort to select?
  Trends Biochem Sci, 31, 135-142.  
15662683 Y.Shen, and U.Ryde (2005).
Reaction mechanism of porphyrin metallation studied by theoretical methods.
  Chemistry, 11, 1549-1564.  
14981080 Z.Shi, and G.C.Ferreira (2004).
Probing the active site loop motif of murine ferrochelatase by random mutagenesis.
  J Biol Chem, 279, 19977-19986.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer