spacer
spacer

PDBsum entry 1kpy

Go to PDB code: 
dna_rna links
RNA PDB id
1kpy

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
DNA/RNA
PDB id:
1kpy
Name: RNA
Title: Pemv-1 p1-p2 frameshifting pseudoknot, 15 lowest energy structures
Structure: P1-p2 frameshifting pseudoknot. Chain: a. Engineered: yes. Other_details: pea enation mosaic virus type i RNA
Source: Synthetic: yes. Other_details: naturally occuring sequence of the p1-p2 frameshifting pseudoknot from pea enation mosaic virus type i. In vitro sp6 transcription.
NMR struc: 15 models
Authors: P.L.Nixon,D.P.Giedroc
Key ref:
P.L.Nixon et al. (2002). Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot. J Mol Biol, 322, 621-633. PubMed id: 12225754 DOI: 10.1016/S0022-2836(02)00779-9
Date:
03-Jan-02     Release date:   11-Jan-02    
 Headers
 References

DNA/RNA chain
  U-C-C-G-G-U-_CH-G-A-C-U-C-C-G-G-A-G-A-A-A-C-A-A-A-G-U-C-A 28 bases

 

 
DOI no: 10.1016/S0022-2836(02)00779-9 J Mol Biol 322:621-633 (2002)
PubMed id: 12225754  
 
 
Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot.
P.L.Nixon, A.Rangan, Y.G.Kim, A.Rich, D.W.Hoffman, M.Hennig, D.P.Giedroc.
 
  ABSTRACT  
 
A hairpin-type messenger RNA pseudoknot from pea enation mosaic virus RNA1 (PEMV-1) regulates the efficiency of programmed -1 ribosomal frameshifting. The solution structure and 15N relaxation rates reveal that the PEMV-1 pseudoknot is a compact-folded structure composed almost entirely of RNA triple helix. A three nucleotide reverse turn in loop 1 positions a protonated cytidine, C(10), in the correct orientation to form an A((n-1)).C(+).G-C(n) major groove base quadruple, like that found in the beet western yellows virus pseudoknot and the hepatitis delta virus ribozyme, despite distinct structural contexts. A novel loop 2-loop 1 A.U Hoogsteen base-pair stacks on the C(10)(+).G(28) base-pair of the A(12).C(10)(+).G(28)-C(13) quadruple and forms a wedge between the pseudoknot stems stabilizing a bent and over-rotated global conformation. Substitution of key nucleotides that stabilize the unique conformation of the PEMV-1 pseudoknot greatly reduces ribosomal frameshifting efficacy.
 
  Selected figure(s)  
 
Figure 6.
Figure 6. (a) Stereo view of the A[(n -1)]·C^+·G-C[n] base quadruple in the average structure of the PEMV-1 pseudoknot formed by loop 1 and stem 2 (A[12]·C[10]^+·G[28]-C[13]). C[10] is shown in red, the accepting Watson-Crick pair in blue, and A[12] of stem 2 which forms the third hydrogen bond to C[10]^+. (b) The three-base reverse turn places C[10] in the proper orientation to form the A[(n -1)]·C^+·G-C[n] base quadruple. C[10] is shown in red, U[9] from the Hoogsteen wedge pair in yellow and G[11], which forms the closing base-pair of stem 2, in blue. (c) Superposition of the bases from the A[(n -1)]·C^+·G-C[n] quadruples from the BWYV pseudoknot (white, 437D),[9.] the HDV ribozyme (red, 1CX0) [22.] and the average structure of the PEMV-1 pseudoknot (blue). (d) Overlay of the heavy atoms of the base quadruples and intervening nucleotide from the HDV ribozyme (red, residues 141-144, 161 of 1CX0) [22.] and the PEMV-1 pseudoknot (blue, residues 10-13, 28).
Figure 8.
Figure 8. (a) Overlay of the 15 lowest energy structures of the PEMV-1 pseudoknot with loop 2 (green) and U[14] (purple) highlighted. (b) Details of the A[25], A[26], and A[27] non-canonical base-pairings between loop 2 (green) and stem 1 (blue) nucleotides. A[25] forms an N1-2' OH hydrogen bond with the sugar of C[16], A[27] forms the analogous interaction with the sugar of C[15], and A[26] forms a pair of reciprocal hydrogen bonds with G[8] from stem 1 (A[26] amino to G[8] N3, G[8] amino to A[26] N1, shown with donors in red, acceptors in blue).
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 322, 621-633) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  20495679 B.Liu, D.H.Mathews, and D.H.Turner (2010).
RNA pseudoknots: folding and finding.
  F1000 Biol Rep, 2, 8.  
20007152 M.Y.Chou, and K.Y.Chang (2010).
An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting.
  Nucleic Acids Res, 38, 1676-1685.  
20639537 R.C.Olsthoorn, R.Reumerman, C.W.Hilbers, C.W.Pleij, and H.A.Heus (2010).
Functional analysis of the SRV-1 RNA frameshifting pseudoknot.
  Nucleic Acids Res, 38, 7665-7672.  
20100813 S.Cao, D.P.Giedroc, and S.J.Chen (2010).
Predicting loop-helix tertiary structural contacts in RNA pseudoknots.
  RNA, 16, 538-552.  
18621088 D.P.Giedroc, and P.V.Cornish (2009).
Frameshifting RNA pseudoknots: structure and mechanism.
  Virus Res, 139, 193-208.
PDB codes: 2rp0 2rp1
19628688 G.Chen, K.Y.Chang, M.Y.Chou, C.Bustamante, and I.Tinoco (2009).
Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
  Proc Natl Acad Sci U S A, 106, 12706-12711.  
19710184 L.Zhang, P.Bao, M.J.Leibowitz, and Y.Zhang (2009).
Slow formation of a pseudoknot structure is rate limiting in the productive co-transcriptional folding of the self-splicing Candida intron.
  RNA, 15, 1986-1992.  
19625386 M.H.Mazauric, J.L.Leroy, K.Visscher, S.Yoshizawa, and D.Fourmy (2009).
Footprinting analysis of BWYV pseudoknot-ribosome complexes.
  RNA, 15, 1775-1786.  
19782089 N.E.Grossoehme, L.Li, S.C.Keane, P.Liu, C.E.Dann, J.L.Leibowitz, and D.P.Giedroc (2009).
Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes.
  J Mol Biol, 394, 544-557.
PDB code: 3hd4
19759148 P.Liu, L.Li, S.C.Keane, D.Yang, J.L.Leibowitz, and D.P.Giedroc (2009).
Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions.
  J Virol, 83, 12084-12093.  
18549303 B.Han, B.Dost, V.Bafna, and S.Zhang (2008).
Structural alignment of pseudoknotted RNA.
  J Comput Biol, 15, 489-504.  
18613678 J.M.Hart, S.D.Kennedy, D.H.Mathews, and D.H.Turner (2008).
NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon.
  J Am Chem Soc, 130, 10233-10239.  
18495941 S.Pennell, E.Manktelow, A.Flatt, G.Kelly, S.J.Smerdon, and I.Brierley (2008).
The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element.
  RNA, 14, 1366-1377.  
17391549 P.C.Bevilacqua, A.L.Cerrone-Szakal, and N.A.Siegfried (2007).
Insight into the functional versatility of RNA through model-making with applications to data fitting.
  Q Rev Biophys, 40, 55-85.  
17353353 P.Liu, L.Li, J.J.Millership, H.Kang, J.L.Leibowitz, and D.P.Giedroc (2007).
A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication.
  RNA, 13, 763-780.  
17507660 S.V.Steinberg, and Y.I.Boutorine (2007).
G-ribo motif favors the formation of pseudoknots in ribosomal RNA.
  RNA, 13, 1036-1042.  
16690998 A.T.Perrotta, T.S.Wadkins, and M.D.Been (2006).
Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme.
  RNA, 12, 1282-1291.  
16865417 P.V.Cornish, D.P.Giedroc, and M.Hennig (2006).
Dissecting non-canonical interactions in frameshift-stimulating mRNA pseudoknots.
  J Biomol NMR, 35, 209-223.  
16964977 P.V.Cornish, and D.P.Giedroc (2006).
Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots.
  Biochemistry, 45, 11162-11171.  
17000902 P.V.Cornish, S.N.Stammler, and D.P.Giedroc (2006).
The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical.
  RNA, 12, 1959-1969.
PDB codes: 2ap0 2ap5
15941360 D.W.Staple, and S.E.Butcher (2005).
Pseudoknots: RNA structures with diverse functions.
  PLoS Biol, 3, e213.  
15884978 E.P.Plant, G.C.Pérez-Alvarado, J.L.Jacobs, B.Mukhopadhyay, M.Hennig, and J.D.Dinman (2005).
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
  PLoS Biol, 3, e172.  
15703909 F.R.Schmidt (2005).
About the nature of RNA interference.
  Appl Microbiol Biotechnol, 67, 429-435.  
16123125 P.V.Cornish, M.Hennig, and D.P.Giedroc (2005).
A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting.
  Proc Natl Acad Sci U S A, 102, 12694-12699.
PDB codes: 1yg3 1yg4
12554858 E.P.Plant, K.L.Jacobs, J.W.Harger, A.Meskauskas, J.L.Jacobs, J.L.Baxter, A.N.Petrov, and J.D.Dinman (2003).
The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.
  RNA, 9, 168-174.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer